BMD IMPLEMENTATION STATUS UPDATE

JAY SENGOZ JANUARY 18, 2022

PENNDOT BY THE NUMBERS

SOL 481-22-01

- Dated January 21, 2022
- IMPLEMENTATION OF BMD FOR WEARING COURSE MIX DESIGNS
- FULL IMPLEMENTATION WILL BE PHASED OVER 3 YEARS
- BULLETIN 27 CHAPTER 2A REVISED TO INCLUDE THE SUBMISSION OF BMD DATA

SOL 481-22-01

YEAR 2023

• ALL < 0.3 MILLION DESIGN ESAL WEARING COURSE JMFs

YEAR 2024

ALL WEARING COURSE JMFs

IMPLEMENTATION PHASES

- Less than 0.3 Million ESAL (50 gyration) wearing course JMFs submitted for the 2023 design year. (Next year)
 - Will <u>require</u> performance testing to be input into eCAMMS for information only.
 - DMEs <u>may</u> approve less than 0.3 million ESAL wearing course JMFs without performance testing on a case-by-case basis. (The data still needs to be input.)
- All wearing course JMFs submitted for the 2024 JMF design year.

(2 Years)

- Performance testing entry into eCAMMS is <u>required before JMF</u> <u>approval is given</u>.
- Only effects wearing course mixtures.
- After the 2024 construction season either limits will be set or the data acquisition process will be adjusted and continued so that <u>meaningful and achievable limits</u> can be established.

BALANCED MIX DESIGN

- Adding Performance Testing (No required limits yet. Just Testing)
 - Hamburg Wheel Track Testing (HWT, AASHTO T 324):
 - Rutting
 - Cracking Tolerance Index Testing (CT-Index, ASTM D8225):
 - Cracking
 - Delta Tc Calculation (ΔTc, AASHTO PP 78):
 - Only for JMFs over RBR of 0.35 and above
 - High RAP/RAS/Recycled mixtures cracking.

PSU RESEARCH PROJECT

- EVALUATION OF ASPHALT TESTING PROTOCOLS IN PA
- NTP July 15, 2022
- DURATION: 38 Months
- ESTIMATED COMPLETION: September 15, 2025
- SCOPE: Assist PennDOT with the validation and implementation of asphalt-related performance testing methods, limits, and protocols that best predict asphalt rutting and cracking in the Pennsylvania climate, using aggregates and other materials used in PA.

PSU RESEARCH PROJECT

TIMELINE

Task	Description	Estimate	ed Task Deli	ivery
1	Summary Report of Literature Review		3 months	Complete
2	Database of Available Experimental Data		4 months	Complete
3	Summary Report of Data Analysis and Gap Identif	ication	10 months	In progress
4	Experimental Plan		12 months	
5	Summary Report of Test Results in Database		27 months	
6	Summary Report of Data Analysis and BMD Verif	ication	30 months	
7	Summary Report of Demand Driven Verification T	Sesting	30 months	
8	Summary Report of Performance Limits Validation	1	33 months	
9	Draft Final Report		35 months	
10	Final Report		38 months	

PSU RESEARCH PROJECT

Table 1 Parameters Included in the NECEPT Database of Performance Test Results

Control Parameters	D	Response Parameters						
Control Parameters	Description	IDEAL-CT	HWTT	I-FIT				
Aggregate Source	Limestone, sandstone, and gravel	Peak Load (N)	SIP	Peak Load (N)				
NMAS	9.5 and 19mm	Fracture Energy (J/m ²)	Strip Creep Ratio	Fracture Energy (J/m2)				
Binder Grade	PG64-22, PG58-28	IDEAL-CT Index (NECEPT)	Max Rut Depth (mm)	Flexibility Index				
Binder Source	UR and AA	IDEAL-CT Index (TTI)	No. of Passes to Max. Rut Depth	Stiffness (MPa)				
Virgin binder content	3.2 to 7.8%	Peak Tensile Stress (KPa)	No. of Passes to 10 mm Rut Depth	Stiffness Index (N/m)				
Recycled Binder Content	0.0 to 1.9%	Peak Tensile Stress (PSI)	No. of Passes to 12.5 mm Rut Depth	Strain at Peak Stress (%)				
Total Binder Content	4.8 to 7.8%	Strain at Peak Stress (%)	Rut Depth at 10,000 Passes (mm)	Displacement at Peak Load (mm)				
Aging Condition	Unaged, ST, LT (both loose and compacted)	Displacement at Peak Load (mm)	Creep Slope (mm/1000 passes)	Work of Fracture (J)				
Additive Type	RAP, RAS, Rej, CRM, antistrip	Work of Fracture (J)	Stripping Slope (mm/1,000 passes)	Accumulated Energy to Peak Load (J/m²)				
Additive Content	RAP:0-35%, RAS:0-8%, CRM:0-15%, Rej:0-0.3%	6						
Testing Temperature	IDEAL:25°C, HWTT: 50°C, I-FIT: 20°C							

- ESTABLISHING THE DATABASE
 - IDENTIFYING THE PARAMETERS
 - IDENTIFYING OUTLIERS
 - SAMPLE VARIABILITY ISSUES

USING MULTIPLE SOURCES IN A JMF

Material Supplier	Material Code - Class	Product Name	% Material	Spec. Grav.	% Absorption
	207 (Aggregate Fine) - B1	Is sand	18.800	2.674	0.78
	207 (Aggregate Fine) - B1	brown sand	18.800	2.568	1.85
	203 (Aggregate) - A8	ls 8's	21.200	2.629	1.00
	203 (Aggregate) - A8	ls 8's	21.100	2.693	0.81
	187 (WMA Technology) - AQUABL	MAXAM	0.000	0.000	0.00
	186 (Asphalt Mixture Additive) - ASTRIP	Sonnegreen AS IV	0.250	1.040	0.00
	17 (Hot Rap Design) - RAP	RAP	15.000	2.715	0.00
UNRC0 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00
UNRC1 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00
MARA7 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00
MARA3 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00
MARA8 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00
ERIEM 15	1 (Asphalt Binder) - PG64S-22	PG 64S-22	5.100	1.030	0.00

- OTHER POTENTIAL VARIABILITY ISSUES
 - EQUIPMENT
 - TECHNICIANS
 - ETC.

	IDEAL TESTING REPORT																		
		ter	Thickn ess	Load	Stopping Load	Max SP			@ 75%		Strength	Peak Displacement		Total Energy	Energy to Peak	ENERGY	T e m	IDEAL-CT	Post-Peak Slope 75%
Date	Time	mm	mm	(kN)	(%)	GR	Voids	%AC	mm	kN	kPa	mm	(0.01 inch)	(Joules)	(Joules)	joules m^2	р	Index	N/MM
6/23/2021	9:58 AM	150	62	0.1	0.1	2.527	7.1	4.4	3.9	14.97	1025	2.31	9.1	79.83	27.83	8584.2	25	65.038	-3461.3
6/23/2021	10:01 AM	150	62	0.1	0.1	2.527	7.0	4.4	3.5	16.01	1096	2.17	8.5	66.17	23.56	7115.1	25	36.288	-4575.8
6/23/2021	10:02 AM	150	62	0.1	0.1	2.527	6.9	4.4	4.8	13.83	947	2.04	8	82.17	22.04	8835.7	25	97.315	-2909.5
6/23/2021	10:06 AM	150	62	0.1	0.1	2.523	7.0	4.4	5.1	14.26	976	2.87	11.3	86.88	30.6	9342.3	25	95.039	-3355.9
6/23/2021	10:08 AM	150	62	0.1	0.1	2.523	6.8	4.4	4.6	15.16	1037	2.52	9.9	85.96	30.56	9243.3	25	95.945	-2926
6/23/2021	10:10 AM	150	62	0.1	0.1	2.523	6.7	4.4	5.3	16.4	1123	3.22	12.7	104.91	38.89	11281	25	139.341	-2854.6
6/24/2021	7:51 AM	150	62	0.1	0.1	2.479	7.2	5.8	4.5	14.57	998	2.68	10.5	80.52	30.55	8658.5	25	77.358	-3359
6/24/2021	7:52 AM	150	62	0.1	0.1	2.479	7.1	5.8	4.7	15.16	1038	2.62	10.3	77.06	28.68	8285.7	25	68.09	-3788.3
6/24/2021	7:54 AM	150	62	0.1	0.1	2.479	7.0	5.8	4.6	14.63	1002	2.61	10.3	82.32	30.27	8851.5	25	86.44	-3131.2

ECAMMS UPDATE

									-	-
	e		MI	vis						1
Home	<u>S</u> ample	JMF	ESB	Product Evaluation	Maintenance	Tools	TR-447 Ref #:	Sample #:	00	Search
Current	System S	Status :								
eCAMM	ISSuppor	rt@pa.g	jov.	- Learning (them immediately to eCAN	IMS Support at 717.42	25.5815 or ema	il
	OT and H OT projec		repres	entatives discuss so	me of the freq	uently asked	l questions about moving to	wards an all-electronic	ticketing prog	ram for
If you n	nissed the	e live w	ebinar	or would like to rev	iew the inform	nation that w	vas shared, please use the lin	k below to access the	video.	
Click H	lere To V	Vatch								
					-					_

NEW! - 2023 JMF Reference Data Type Submissions (CT Index & Hamburg Tests)

Suppliers are required to submit additional JMF Reference Data for the 2023 Wearing Course N_{design} = 50 Gyration JMFs. <u>Click here</u> for the full list and definitions of the new JMF Reference Data fields.

ECAMMS UPDATE

E-mail notification dated 12/7/2022

eCAMMS Reference Data Type fields			Description
	Existing	CT-Index: CTI Cracking Index	Average Cracking Tolerance Index of all specimens, (unitless)
	Existing	CT-Index: Gf (joules/m2)	Average Failure Energy of all specimens [Area under the load vs. the average Load-Line Displacement (LLD) curve], (Joules/m ²)
1.1	Existing	CT-Index: L75 (mm)	Average Post peak displacement at 75% of peak load of all specimens, (mm)
2	Existing	CT-Index: M75 Slope (N/m)	Average post-peak slope at 75% of peak load of all specimens, (N/m)
S N	Existing	CT-Index: Wf (joules)	Average Work of failure of all specimens, (Joules)
D822	New	CT-Indx: Avg Peak Load (kN)	Average of the Peak Loads of all specimens, (kN)
	New	CT-Indx: Avg Disp.@Peak Ld	Average Displacement of all specimens at Peak Load, (mm)
ASTM	New	CT-Indx: Pk Tens.Str. (kPa)	Average Peak Tensile Strength of all specimens, (kPa)
	New	CT-Indx: No. of Specimns (n)	Number of specimens, (n)
A	New	CT-Indx : Cracking Index COV	COV = Coefficient of variation for the CT Index, (%)
	New	CT-Indx: Average Air Voids	Average air voids of all specimens (Each individual specimen air void has to be within 7% ± 0.5%), (%)
	New	CT-Indx: Test Equip.Man/Modl	Testing Equipment Manufacturer and Model, (Text)
_	New	CT-Indx: Testing Lab	Name of the Testing Lab, (Text)
1	Existing	HWT: 10K Impression	Average maximum rut depth of test specimens in Left and Right Wheel Tracks at 10,000 passes, (mm)
	Existing	HWT: 12.5 mm Passes	Average Number of Passes on test specimens in Left and Right Wheel Tracks at 12.5 mm rut depth, (N passes)
	Existing	HWT: 20K Impression	Average maximum rut depth of test specimens in Left and Right Wheel Tracks at 20,000 passes, (mm)
-	Existing	HWT: SIP Passes	Average Number of Passes to Stripping Inflection Point (SIP) on test specimens in Left and Right Wheel Tracks, (N passes)
- I КАСК (H W I) Г 324	New	HWT: Creep Slope - Avg	Average Creep Slope of test specimens in Left and Right Wheel Tracks, (Calculated)
E	New	HWT: Stripping Slope - Avg	Average Stripping Slope of test specimens in Left and Right Wheel Tracks, (Calculated)
-	New	HWT: 10K Impression-Lt (mm)	Maximum rut depth of test specimens in Left Wheel Track at 10,000 cycles, (mm)
Č.	New	HWT: 12.5 mm Passes - Left	Number of passes to reach 12.5 mm rut depth on test specimens in Left Wheel Track, (N passes)
324	New	HWT: 20K Impression-Lt (mm)	Maximum rut depth of test specimens in Left Wheel Track at 20,000 cycles, (mm)
2 2	New	HWT: Creep Slope - Left	Creep slope of test specimens in Left Wheel Track, (Calculated)
	New	HWT: Stripping Slope - Left	Stripping slope of test specimens in Left Wheel Track, (Calculated)
	New	HWT: No.of passes@max rut-Lt	Number of passes reached for test specimens in Left Wheel Track at maximum rut depth, (N passes)
ΞĔ	New	HWT: Specimen #1 Air Void-Lt	Air Voids of test specimen #1 in Left Wheel Track (has to be within 7% ± 0.5%), (%)
AASHTO	New	HWT: Specimen #2 Air Void-Lt	Air Voids of test specimen #2 in Left Wheel Track (has to be within 7% ± 0.5%), (%)
AASHTO	New	HWT: 10K Impression-Rt (mm)	Maximum rut depth of test specimens in Right Wheel Track at 10,000 cycles, (mm)
P C	New	HWT: 12.5 mm Passes - Right	Number of passes to reach 12.5 mm rut depth on test specimens in Right Wheel Track, (N passes)
5	New	HWT: 20K Impression-Rt (mm)	Maximum rut depth of test specimens in Right Wheel Track at 20,000 passes, (mm)
		HWT: Creep Slope - Right	Creep slope of test specimens in Right Wheel Track, (Calculated)
		HWT: Stripping Slope - Right	Stripping slope of test specimens in Right Wheel Track, (Calculated)
7	New	HWT: No.of passes@max rut-Rt	Number of passes reached for test specimens in Right Wheel Track at maximum rut depth, (N passes)
È	New	HWT: Specimen #1 Air Void-Rt	Air Voids of test specimen #1 in Right Wheel Track (has to be within 7% ± 0.5%), (%)
~	New	HWT: Specimen #2 Air Void-Rt	Air Voids of test specimen #2 in Right Wheel Track (has to be within 7% ± 0.5%), (%)
	New	HWT: Test Equip.Man./Model	Testing Equipment Manufacturer and Model, (Text)
	New	HWT: Testing Lab	Name of the Testing Lab, (Text)

FOLLOW PENNDOT

www.PennDOT.pa.gov

www.DMV.pa.gov

PennsylvaniaDepartmentofTransportation

f

PennDOTNews

PennsylvaniaDOT

in /company/PennDOT

PennDOTSec

PennDOTSec

QUESTIONS

Jay Sengoz csengoz@pa.gov

