PA Initiative on Asphalt Mix Performance Tests

Pennsylvania Asphalt Pavement Association

Regional Technical Meeting

March 17, 18, 19, 2020

Gary Hoffman, PAPA and Mansour Solaimanian, Penn State

DISCUSSION TOPICS

DISCUSSION TOPICS

LLAP Best Practices

- SMA Wearing
- WMA/Antistrip
- MTV Required
- Longitudinal Joint Density Specification
- **• RIDE SPECIFICATION OPTIONAL**
- Tack Coat Every Layer (New Section 460)
- % WITHIN TOLERANCE (PWT) ACCEPTANCE
- INCENTIVIZE CRITICAL ELEMENTS (I.E. MAT DENSITY)
- PERFORMANCE TESTS/BALANCED MIX DESIGN

Examples of Performance Tests

DCT IDEAL-CT

crack

• Wheel Tracking rut SCB

Performance Test & LLAP driven by:

TQI

STIC

Balanced Asphalt Mix Design

Asphalt Content

HWT testing Pilot

HWT Testing Advantages

- Well accepted nationally for rut testing
- Rutting Resistance Measure
 - Very well established track record detecting rut-prone asphalt mixtures.
 - Rules of thumb
 - 12.5mm at 20,000 cycles for polymer modified mixes
 - 12.5mm at 10,000 cycles for non-polymer modified mixes
- Moisture Susceptible Aggregate Measure
 - Can replace AASHTO T283 (TSR) eventually

HWT Standard Special Provision Status

- Standard Special previously circulated through APQIC Pro-team.
- CT 1 and CT 2 circulated
- Shooting for end of March for solicitation letter to Districts.
- Asking Districts to include the special provision on a minimum of 3 projects in the 2020 construction season with anticipated final inspection dates before October 31, 2021.
- Payment is a PDA. (about \$700 per test)

HWT Standard Special Provision 2020

- HWT Testing results are for **information only** in 2020.
- HWT test results are not required until the final project inspection.
- No project construction delays because of testing availability or results in 2020.
- Payment to contractor for HWT testing in 2020.
- Incremental changes in future years.
 - Incidental to JMF, Testing requirment for JMF approval, Limits established...

DISCUSSION TOPICS

Performance Based Testing & Long-Life Asphalt Pavements

PA Initiative on Performance Testing

Candidate Performance Tests

Results, Summary, Conclusions

Performance Testing

- General agreement on the rutting test (HWT) and test protocols.
- The "school is still out" on the best cracking test and test protocols.

Industry SCB/IDEAL CRACK Testing: How Did It Start?

- Move to Crack Performance Testing
- Initiated by Asphalt Quality Improvement Committee and PAPA
- Industry Interested in Accelerating Move to Performance Testing

Purpose of the Effort

- Bridge the Gap to Crack Performance Testing
- Investigate Performance of PA Mixes in SCB/IDEAL crack performance tests
- Develop A Database of SCB/IDEAL Test Results
- Evaluate Sensitivity of the PA Mixes to the Tests
- Evaluate Correlation with Field Performance

SCB Mix Criteria and Variables

- Air Void: 5.5% (Final SCB Specimen)
- Design Binder Content (and +0.5%)
- Mixes with 15% RAP at Design BC and at 0.5% Higher Binder Content
- Mixes at higher RAP Contents
- NMAS: 4.75, 9.5mm, 12.5mm, 19mm, 25mm
- Lab vs Plant Produced
- Short term vs Long Term Aging

Data Range: Flexibility Index (higher is better)

17

General Observations

- 1. Higher AC Content \rightarrow higher F.I.
- 2. Higher RAP content lower F.I.
- 3. Longer aging \rightarrow lower F.I.
- 4. Plant mix has higher F.I. than lab mix
- 5. Higher voids \rightarrow higher F.I.
- 6. SMA mix delivers higher F.I.
- 7. Finer mix with high $BC \rightarrow$ higher F.I.

DISCUSSION TOPICS

Performance Tests Under Consideration

- Hamburg Wheel Tracking
- IDEAL-CT Test

Hamburg Wheel Tracking (AASHTO T 324)

Hamburg Wheel Tracking Device

Moisture Conditioning with Hydrostatic Pore Pressure (ASMT D7870) + 20 Hr. Conditioning for Adhesion

MiST (Moisture Induced Stress Tester)

Traffic Effect on Moisture Damage

Pore Pressure Build-Up Due to External Cyclic Stress

Compression/Tension Cycle (Cyclic Pressure/Suction)

Wheel Tracking Test Data

Binder Stiffness Effect

Binder Stiffness Effect

HWT - Submerged

PG 64-22

PG 58-28

SP 12.5mm – Limestone Aggregate (Aggregate 1)

Binder Stiffness Effect HWT - Submerged

PG 64-22

PG 58-22

SP 9.5mm – Limestone/Dolomite Aggregate (Aggregate 2)

Mix/Aggregate Effect

Mix/Aggregate Effect

Rejuvenator Effect – 35% RAP Mix

Number of Wheel Passes

4,000 8,000 12,000 16,000 20,000 0 0 -2 -4 Rut, mm -8 -10 -12 -14 -8% Rejuvenator -16

Looking at Wheel Tracking Results for

- Submerged
- MiST Conditioned
- Dry

Aggregates Used in the Study

Limestone, Dolomite, and Siliceous Gravel

Dolostone shown here

HWTD - Submerged

HWTD – after MiST

PennState College of Engineering LARSON TRANSPORTATION INSTITUTE

35

Dry vs. MiST vs. Submerged

Number of Wheel Passes 10,000 0 5,000 15,000 20,000 25,000 0 -1 -2 Submerged -3 Rut Depth, mm -4 . -5 Dry -6 . -7 -~ MiST --8 -9 Mix 1 - Left Track -10

Performance Tests Under Consideration

- Hamburg Wheel Tracking
- IDEAL-CT Test

Traffic Based Criteria (HWT) - Example

Traffic Level, (Million ESALs)	Max. Rut Depth at 20,000 passes (mm)	SIP (Min.)	Strip/ Creep Ratio (Max.)	Passes to 10mm Rut (Min.)
> 10	10			
≥10	15	16,000	2.0	15,000
	10			
\geq 3 and <10	15	14,000	2.0	12,000
	20	16,000	3.0	14,000
	15			
<3	20	14,000	3.0	10,000
	25	16,000	4.0	12,000

IDEAL Cracking Test for Asphalt Concrete

Indirect Tensile Asphalt Cracking Test

IDEAL-CT

Proposed by Research at Texas Transportation Institute (TTI)

Indirect Tensile Strength Test (for AASHTO T 283, Tensile Strength Ratio (TSR)

Indirect Tensile Test at Low Temp.

IDEAL – Test Results

IDEAL – Test Results

Criteria established based on CT_{Index}

$$CT_{Index} = \frac{G_f}{\frac{P}{l}} \times \left(\frac{l_{75}}{D}\right)$$

$$\frac{P}{l} = |m_{75}| = \frac{P_{85} - P_{65}}{l_{85} - l_{65}}$$

Types of Mixes Tested (25 Mixes)

Source	# of Mixes	# of Plugs	Mix Origin	Mix Condition	NMAS, mm	Binder Grade	Binder Content	RAP
01	9	27	Lab Prod.	LTOA	9.5	58-28 64-22 76-22	5.2 to 6.2	0, 15, 25
02	9	27	Lab Prod.	LTOA	9.5	58-28 64-22 76-22	5.1 to 6.1	0, 15, 25
03	7	35	Plant Prod.	STOA	6.3	64-22	6.3	0
					6.3	76-22	6.9	0
					9.5 (3)	64-22	5.9 & 6.0	15.0, 20.0
					19 (2)	64-22	4.8 & 5.1	25.0, 28.5

Air Void Comparison

Breaking Specimens

Test Temperature: 25°C Displacement Rate: 50 mm/min

Displacement, mm

LTOA

LTOA

STOA

What COV should we use?

Criterion on COV	Number of Mixes
≥ 30 %	5
≥25%	6
≥ 20 %	7
≥15%	15
≥10%	20

COV: Coefficient of Variation

Total Number of Mixes: 23

Effect of Binder Content (Source 1)

Effect of Binder Content (Source 2)

RAP Content, %

RAP Content, %

RAP Content, %

LTOA

Effect of Binder Grade & RAP (Source 1) 100 No RAP NMAS 9.5 mm **Binder Content: 5.7%** 80 **CT**_{index} 25% RAP 60 15% RAP **40** 25% RAP 20 0 64-22 64-22 64-22 58-22

Binder Grade

Effect of Binder Grade & RAP (Source 2)

Binder Grade

DISCUSSION TOPICS

Performance Based Testing & Long-Life Asphalt Pavements

PA Initiative on Performance Testing

Candidate Performance Tests

Results, Summary, Conclusions

Summary & Recommendations (HWTD)

• HWTD effectively captures binder effect.

• HWTD effectively captures mix differences.

Initial impact of water is reduction of rutting (improvement of performance).

Summary & Recommendations (HWTD)

- Damaging effect of water is manifested through increase of cycles and loading.
- Performance of mix under load significantly better than performance under water/load combination (Dry vs Wet)
- Best to establish HWTD criteria in connection with the traffic level (ESALs)

Summary & Conclusions (IDEAL-CT)

- Trend of Data very similar to SCB
- IDEAL-CT Range: 33 to 460
- In most cases, the test is very repeatable
- •COV mostly under 25%

Summary & Conclusions (IDEAL-CT)

- Increasing binder increases flexibility
- Increasing RAP over 20% decreases flexibility
- •Use of soft binder with high RAP: mixed results (RAP binder stiffness effect?)

Recommendations (IDEAL-CT)

- Use four replicates
- Need a limit on COV
 - Round robin testing neededRecommendation on COV: 25%
Long Life Asphalt Projects – DCT data

The Brazilian Test (The Split Test or Indirect Tensile Test)

Tensile Strength of Concrete (Carneiro, <u>1943</u>)

Tensile Strength of Stabilized Materials (Hudson, Kennedy, <u>1967</u>)

Tensile Strength of Asphalt (Kennedy et al., <u>1969</u>)

Tensile Strength of Rocks (ISRM, <u>1978</u>)