2019 PAPA/PENNDOT BUS TOUR

Radisson Lackawanna Station Hotel Scranton July 31, 2019

Pennsylvania Asphalt Pavement Association

3544 North Progress Avenue • Suite 100 • Harrisburg, PA 17110 Phone (717) 657-1881 FAX (717) 657-0687 www.pa-asphalt.org

THIN ASPHALT OVERLAYS "6.33 PERFORMANCE UPDATE"

Gary L. Hoffman, P.E.
Director of Technical Services, PAPA
and
Neal Fannin, P.E.
Pavement Materials Engineer, PennDOT

THIN ASPHALT OVERLAYS "6.33 PERFORMANCE UPDATE"

THIN ASPHALT OVERLAYS "6.33 PERFORMANCE UPDATE"

Outline

- THMAO As A Pavement Preservation Strategy
- Mix Design and Evaluation
- Construction/Demo Projects
- Performance Evaluations
- Summary/findings

THIN OVERLAYS FOR PAVEMENT PRESERVATION

Roadway Improvement Activities

			Paver	ment Preserv	/ation
Activity	Re-	Major	Minor	Preventive	Routine
	construction	Rehabilitation	Rehabilitation	Maintenance	Maintenance
Increase					
Capacity					
Increase					
Structural			••		
Strength			•		
Improve					
Pavement					
Condition				_	
Restore					
Serviceability					
Extend					
Service Life					

Economics

- Chou et al. (2008):
 - Thin overlays on asphalt almost always most cost effective
 - Thin overlays on PCC not as cost effective as on asphalt, but still cost effective
- 2008 NAPA Survey of State Asphalt Associations

Treatment	Expected Life, yrs	Range	Cost, \$/SY	Range	Annual Cost, \$/lane-mile
Chip Seal	4.08	2.5 - 5	2.06	0.50 – 4.25	\$3,554.51
Slurry Seal	3.25	2 - 4	1.78	1.00 – 2.20	\$3,855.75
Micro-surfacing	4.67	4 - 6	3.31	2.30 – 6.75	\$4,989.81
Thin Surfacing	10.69	7 - 14	4.52	2.40 – 6.75	\$2,976.69

Economics

How Thick is Thin Asphalt?

Placed up to 1.25 inches in thickness

Ultrathin layers:between0.75" and 1.0"

Mat Thickness/NMAS Ratio

NMAS: Nominal Max. Aggregate Size

Aggregate NMAS

3 ≤ Ratio of Thickness to NMAS ≤ 5

Importance of NMAS in Thickness

Table shown with:

Mat Thickness:

from 1.5 inches to 0.50

inches, and

NMAS:

from 12.5 mm to 4.75 mm

Good

Ok

Avoid

Mat Thickness			
In	mm	NMAS	Ratio
1.50	38.1	12.5	3.0
		9.5	4.0
		6.3	6.0
		9.5	3.3
1.25	31.8	6.3	5.0
		4.75	6.7
		9.5	2.7
1.00	25.4	6.3	4.0
		4.75	5.3
0.75	19.1	6.3	3.0
	13.1	4.75	4.0
0.50	10.7	6.3	2.0
	12.7	4.75	2.7

Significance of Aggregate Skid Resistance Level in Thin Asphalt

Two of the Most Important Properties Affecting Friction (Skid Resistance) Are:

1. Aggregate Microtexture

2. Pavement Macrotexture

Significance of SRL in Thin Asphalt

As NMAS & thickness gets smaller, harder to develop macro and more demand on micro.

PA Aggregate Skid Resistance Level

ADT	SRL
20,000 & Above	E
5,000 to 20,000	Н
3,000 to 5,000	G
1,000 to 3,000	M
1,000 and Below	L

MIX DESIGN AND EVALUATION

PA Thin Lift Overlay Development

BACKGROUND -

- NEPPP: Smooth Seal in Ohio, THMAO in NY
- PAPA Technical Subcommittee
 - Crafted Draft Specification
 - 6.3mm PG 76-22, Polymer modified,
 - 75 Gyrations/Virgin Mix
- PennDOT Research Project Approved

Special Provision

- •6.3 mm 100% passing 3/8 in.
- Dense –graded (6 sieve sizes) SRL
- PG 76-22 polymer modified
- N design = 75 gyrations
- Design voids = 4.0%
- Min. VMA = 16.5
- No RAP or RAS
- Greater than 50 F
- Optimum Rolling Pattern

Use Guidelines

- Only on structurally sound pavement
- Same as micro-surfacing
- For correcting surface distresses only
- Consider grinding PCC first

6.3 mm NMAS Mix Placed at 1 inch Thickness

- Aggregate: Skid Resistance Level (SRL): E
- Polymer Modified Binder: PG 76-22 (for heavier traffic)
- Gyration Level: 75
- Design Air Void: 4%, Min. Design VMA: 16.5%
- Design Binder Content: 6.7%; 7.0%; 6.9%
- NO RAP/RAS

6.3 mm NMAS Mix

Performance Evaluation - HWTD

- Specimens under water
- Test Temperature:50°C
- 20,000 Passes
- 50 Passes per minute
- 158-lb load

RUT TEST

Performance Evaluation - HWTD

Performance Evaluation – Texas Overlay Tester

Performance Evaluation – Overlay Tester

Test Temperature: 25°C # of load cycles: 1000 Or until load reduced to 93% of original

- Repeated loading (triangular form) under constant deformation
- Deformation magnitude per load cycle: 0.025 inches (0.6 mm)
- Duration of each load cycle:
 10 seconds

Cycles to failure > 500

Good Performance

Tack Coat Evaluation

Direct Shear Applied at the Asphalt-Concrete Interface

Tack Coat Evaluation

Shear Strength = 44.5 psi - Good Performance

Recommended Requirements for Design of Asphalt Mix for Thin Lifts

Asphalt Binder

- PG 76-22 or PG 64E-22 if ESALs > 3M
- PG 64-22 if ESALS ≤ 3M
- PG 76-22 or PG 64E-22 if grade ≥ 5% regardless of traffic level.

Mix Design

- 75 Gyrations
- Air Void: 4.0%
- VMA: 16.5%

Recommended Requirements for Design of Asphalt Mix for Thin Lifts

Tack Coat, CSS-1h

Surface Type	Residual Application	
	Rate(Gallons/SY)	
New Asphalt Mixture	0.03 to 0.04	
Oxidized Asphalt Mixture	0.04 to 0.06	
	0.05.40.07	
Milled Asphalt Mixture	0.05 to 0.07	
Milled PCC	0.05 to 0.07	
Portland Cement	0.05 to 0.07	
Concrete	788	

pennsylvania

Construction of Thin Overlays/Demo Projects

PennDOT Pilot Projects

PILOT PROJECTS

STATE ROUTE	PAVEMENT SURFACE TYPE
SR 22 (Farm Show)	Diamond Ground Concrete
SR 220	Milled Asphalt
SR 230	Asphalt Overlay

Repair/Prepare the Base

Repair/Prepare the Base

Repair/Clean Before Tacking

Texture of the Jointed Concrete Pavement

Emulsion Tack Coat Application

NOTE: TEXTBOOK FULL COVERAGE SR 22

Smooth Mat Right Behind The Paver

Rollers Follow Paver Closely

Mat Temperature

Finished Overlay – SR 0022

SR 230 – Finished Overlay

SR 220 – Finished Overlay

Coring for Density & Lab Testing

Performance Evaluation of Thin Overlays

Performance – SR 0022

Performance – SR 0022

Performance – SR 0022

SR 220 – Performance

SR 220 – Performance

SR 220 – Performance

June 2019
– 72 Months
After Paving

SR 230 – Before THMAO

SR 230 – Performance

SR 230 - Performance

Skid Resistance Results

Rutting

Ride Quality & Smoothness

New PUB 408 Section 412 Plant Mix 6.33mm Thin Asphalt Overlay

Revised PUB 408 Section 460 Bituminous Tack Coat

Publication 242 PAVEMENT POLICY MANUAL May 2015 Edition

6.3mm Mix Project Selection

- This is a Preservative Treatment 3/4" to 1½" Depth
- It is a highly competitive alternate to a POLYMER-MODIFIED EMULSIFIED ASPHALT PAVING SYSTEM (MICRO SURFACING) or ULTRA-THIN BONDED WEARING COURSE
- Advantages of 6.33 WMA Thin Lift Asphalt Mix:
 - SY cost similar to Micro & UTBWC
 - Maintains both long term surface smoothness & friction
 - Quiet pavement
 - Adds structure to the pavement
 - Conventional paving methods & equipment
 - 10+ years of service/minimal maintenance/reduced life cycle costs

Table 1. SHRP 2 data on preservation treatment life and cost (Peshkin et al., 2011)

Treatment	Life, Years		Cost Per Square Yard		Square Yard Cost Per Year	
	Min	Max	Min	Max	Min	Max
Microsurfacing (single course)	3	6	\$1.50	\$3.00	\$0.25	\$1.00
Chip Seal (single course)	3	7	\$1.50	\$4.00	\$0.21	\$1.33
Thin HMA Overlay	5	12	\$3.00	\$6.00	\$0.25	\$1.20
Ultra-Thin HMA Overlay	4	8	\$2.00	\$3.00	\$0.25	\$0.75

6.3mm Mix Spec. Possible Changes

- 6.3mm asphalt mix currently only allows PG 76-22 asphalt
- Research project constructed in 2018 is evaluating PG 64-22 mixtures
- Centre Co., SR 1001

6.3mm Mix Spec. Possible Changes

- Additional
 6.3mmsection added to further evaluated
 PG 64-22 only option
- Clearfield Co., SR 453
- Construction by the end of July 2019

Hamburg Test Results

ΔTc Data

AGGREGATE GRADATION TWEAKS

PROPOSED AT APQIC MEEETING

AGGREGATE GRADATION REQUIREMENTS, PERCENT PASSING			
Sieve Size	Min. – Max.		
3/8"	100 Min.		
1/4"	90-100		
No. 4	0-85 90 Max.		
No. 8	37 -55 <u>57</u>		
No. 50	8-25		
No. 200	3-10		

AGGREGATE GRADATION TWEAKS

PROPOSED AT APQIC MEEETING

Summary/Findings

Summary/Findings

- 6.33 mm Thin Asphalt A Good Tool for Surface Treatment – A Preservative Treatment!
- Proper Base Repair is a <u>MUST</u>
- Improved Ride and Friction (Initial)
- Improved Ride and Friction Maintained (7Yrs.)
- Minimal Rutting Observed

Summary

Concerns:

- Rapid Mat Cooling
- Reflection of cracks is a challenge on jointed or cracked pavement

Good Mix Lab Performance:

- Rutting and Moisture Resistance (HWTD)
- Crack Resistance (Texas Overly Test)
- Good Tack Goat Adhesion

