Asphalt Mix Performance Testing for PA An Update

Pennsylvania
Asphalt Pavement Association
59th Annual Conference
January 30, 2019

DISCUSSION TOPICS

Performance Based Testing/SCB Initiative

Long Life Asphalt Pavements

An Update on SCB Test Results

DISCUSSION TOPICS

Performance Based Testing/SCB Initiative

2 Long Life Asphalt Pavements

An Update on SCB Test Results

Design/Place A Mix that Does Not

RUT

CRACK

Balanced Mix Design The Goldilocks Principle

Balanced Asphalt Mix Design

Need Proper Performance Test for Balanced Mix Design

- Two Important Considerations:
 - Need Right Test and Reliable Criteria
 - Don't Forget the Effect of Pavement Structure

Examples of Performance Tests

Wheel Tracking

Industry SCB Testing: How Did It Start?

- Move to Performance Testing
- Initiated by Asphalt Quality Improvement Committee and PAPA
- Industry Expressing Interest in Participating

Purpose of the Effort

- Bridge the Gap to Performance Testing
- Investigate Performance of PA Mixes in SCB
- Develop A Database of SCB Test Results
- Evaluate Sensitivity of the PA Mixes to the Test
- Evaluate Correlation with Field Performance

SCB Test Setup

Specimen Thickness: 50 mm

Notch Depth: 15 mm Notch Width: 1.5 mm

Parameters Used For Evaluation

Fracture Energy

$$G_f = \frac{W_f}{B \cdot L}$$

B: Specimen Thickness

L: Ligament Length

Flexibility Index

$$FI = A \times \frac{G_f}{abs(m)}$$

A: Constant

Stiffness Index

Slope @ 50% Peak Load in Pre-Peak Curve

Performance Test & LLAP driven by:

• TQI

• STIC

DISCUSSION TOPICS

Performance Based Testing/SCB Initiative

Long Life Asphalt Pavements

3 An Update on SCB Test Results

Heavy Duty ID2 placed in 1991 – 25 years

LLAP Best Practices

- MTV Required
- Longitudinal Joint Density Specification
- RIDE SPECIFICATION OPTIONAL
- Tack Coat Every Layer (New Section 460)
- % WITHIN TOLERANCE (PWT) ACCEPTANCE
- INCENTIVIZE CRITICAL ELEMENTS (I.E. MAT DENSITY)

LLAP Performance Tests

Rutting Test

- Hamburg Wheel Tacking Test. (AASHTO T 324)
 - Measures rutting potential and gives an indication of moisture sensitivity.
 - Gyratory samples %7.0 (+/- %1.0) air voids
 - Test run at 131⁰ F (55⁰ C)
 - 12.5mm (0.5 inch) rut at 20,000 cycles general rule of thumb for limit on superpave.

-16

-20

5000

10000

Wheel Passes

15000

20000

- Disk-Shaped Compact Tension (DCT) testing. (ASTM D7313)
 - Measures fracture energy
 - Gyratory samples %7.0 (+/- %1.0) air voids.
 - Test run at 10^o C above the low PG mix designation. (-12^oC (10.4^o F) for PG64-22)
 - Fracture energy requirements vary depending on mix type (SMA) and layer (wearing, binder)

c1 cgoodhart, 1/11/2017

- Semi-Circular Bending (SCB) testing. (AASHTO TP 105)
 - Measures fracture energy
 - Samples fabricated from gyratory samples or cores.
 - Test run at 10^o C above the low PG mix designation. (-12^oC (10.4^oF) for PG64-22)
 - Fracture energy requirements vary depending on mix type (SMA) and layer (wearing, binder)

- Illinois Flexibility Index Test (IFIT). (AASHTO TP 124)
 - Measures fracture energy and post peek slope.
 - Uses fracture energy and load/displacement slope to compute Flexibility Index.
 - Gyratory samples %7.0 +/- %1.0 air voids
 - Test run at 25° C +/- 0.5° C (77°F).
 - Flexibility Index requirements vary depending on mix type (SMA) and layer (wearing, binder)

- Overlay Test (OT). (TEX-248-F)
 - Measures fatigue or reflective cracking potential.
 - Gyratory samples %7.0 +/- %1.0 air voids.
 - Test run at 25° C (77°F).
 - Applies load to induce 0.025 (3/128ths) inches displacement.
 - Number of cycles to failure is reported along with percent decline in load.

Long Life Asphalt Projects – DCT data

DCT Performance Diagram

Long Life Asphalt Projects – IFIT data

IFIT Performance Diagram

Long Life Asphalt Projects – Overlay Test data

TEX Overlay Test Data

Long Life Asphalt Projects – SCB Test data

SCB Data at -12C and -24C degrees

Data Comparison

Producer 1

- Eff.AC 6.6%
- VMA 18.7
- Pass #4 38% = 47% retained
- Pass #8 22% = 16% retained
- Coarse
 - Type Calcareous Sandstone
 - Sodium 1%, LA –
 21%
 - Flat & Elongated 3:1
 8.7%
- Fine
 - Type Limestone
 - Sodium 5%

Producer 2

- Eff. AC 6.5%
- VMA 18.2
- Pass #4 39% = 52%
 retained
- Pass #8 21% = 18% retained
- Coarse
 - Type Sandstone
 - Sodium 5%, LA– 32%
 - Flat & Elongated 3:1 3.0%
- Fine
 - Type Limestone / Dolomite
 - Sodium 2%

Producer 3

- Eff. AC 6.2%
- VMA 18.1
- Pass #4 48% = 54% retained
- Pass #8 25% = 23% retained
- Coarse
 - Type Sandstone / Shale
 - Sodium 2%, LA 15%
 - Flat & Elongated 3:1 1.4%
- Fine
 - Type Limestone / Dolomite
 - Sodium 2%

Mix Comparison

Producer 1

Producer 3

Long Life Asphalt Paving Project - IFIT

IFIT Performance Diagram

Challenges

• Limits from one region may not apply in all others.

• Aggregates seem to mater. (Not just liquid asphalt)

• Testing labs that can do the tests are very limited.

Implementation Challenges

- Implementation will not be quick or simple.
 - Pick performance test(s)
 - Decide on test protocols.
 - Specification pilot(s).
 - Who will be doing testing and how large of an investment is the equipment?
 - Contractors / Producers
 - Special Testing Labs
 - Enough lead time between project bid and paving?
 - Trained technicians to run testing?
 - After the initial rush to get testing done will there be enough tests run to sustain an industry?

DISCUSSION TOPICS

Performance Based Testing/SCB Initiative

2 Long Life Asphalt Pavements

An Update on SCB Test Results

Mix Criteria and Variables

- Air Void: 5.5% (Final SCB Specimen)
- Design Binder Content (and +0.5%)
- Mixes with 15% RAP at Design BC and at 0.5% Higher Binder Content
- Mixes at higher RAP Contents
- NMAS: 4.75, 9.5mm, 12.5mm, 19mm, 25mm

Plant vs Lab, and Aging Effect

Statistics

TOTAL NUMBER OF SGC PLUGS RECEIVED = 85

Number of Plugs in each Category

Summary of SGC Plugs Tested (total of 85)

Source	Mix Origin	Mix Condition	NMAS, mm	Binder Grade	# of Binder Content s	RAP
01	Plant	Long	9.5	64-22	1	15
02	Plant/Lab	Short/Lon g	9.5	64-22	6	0
03	Plant	Short/Long	9.5	64-22	2	0
04	Plant/Lab	Long	9.5	64-22	1	0
05	Plant/Lab	Short	4.75, 9.5, 25	64-22 <mark>76-22</mark>	4	0, 15, 30
06	Plant/Lab	Short/Lon g	9.5	64-22	6	15
07	Lab	Long			2	0, 15
08	Lab	Short	9.5, 19	64-22	4	10, 15
09	Lab	Long	9.5	64-22 <mark>76-22</mark>	1	15, 20
10	Lab	Short/Lon g	9.5	64-22 76-22	2	15, 20
11	Lab	Long	9.5	64-22	1	0, 15

Asphalt Content

Number of Plugs in each BC Category

Reported vs. NECEPT Measured Air Void Comparison

Specimen Preparation

- SGC Specimen or Field Cores
- Cut to Ensure Minimum AV
 Gradient
- Obtain Density
- Condition Specimens at Test
 Temperature
- Conduct Test

SCB Specimens

Specimens After Cutting Ready for Testing

Specimens Before (L) / After (R) Testing

Results from Specimens Prepared with High Quality, COV of AV < 5%

Overall Data Range and Distribution: Air Void (After Cutting)

Overall Data Range and Distribution: Fracture Energy

Overall Data Range and Distribution: Flexibility Index

Overall Data Range and Distribution: Peak Load

General Observations (G.O.)

- 1. Higher AC Content \rightarrow higher F.I.
- 2. Higher RAP content lower F.I.
- 3. Longer aging \rightarrow lower F.I.
- 4. Plant mix has higher F.I. than lab mix
- 5 Higher voids \rightarrow higher F.I.
- 6 SMA mix delivers high F.I.
- 7. Finer mix with high BC \rightarrow higher F.I.

Binder Content Effect

RAP Content Effect

All Specimens were STOA

RAP Content Effect

All Producers

Aging Effect

Aging Effect

All Producers

SMA vs Conventional Mix

STOA

• 5.9/6.4/6.9%BC

9.5mm

- 0/15%RAP
- PG64-22/PG76-22

Where should we go next?

- 1. Gather information from producers on details of aging protocol and specimen preparation
- 2. More SCB testing to fill in some of the gaps.
- 3. Test mix(es) with proven good long term performance.
- 4. Test to determine long term effects of rejuvenators.
- 5. Track mix performance in the field to verify lab predictions.