Optimized or Balanced Mix Design

- Crack Resistant
- Rut Resistant
- Resistant to Moisture Damage

Balanced Mix Design: ETG Definition

 Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure

Disk-Shaped Compact Tension (DCT) Test

- ASTM D7313-13
- Loading Rate:
 - Crack Mouth Opening Displacement
 - CMOD Rate = 1.0 mm/min
- Measurements:
 - CMOD
 - Load

Semi-Circular Bend (SCB) Test

- Multiple variants exist
 - Early work in Europe
 - Simultaneous cold (Marasteanu et al. MN)
 and intermediate temperature (Mohamed et al. LA) versions
 - Recent work from Al-Qadi et al. (IL) → AASHTO TP 105
- AASHTO TP 105 (I-FIT)
 - Line load control, loading rate = 50 mm/min
 - Test temperature = 25 deg. C
- Measurements:
 - Displacement
 - Load
- Outcomes
 - Fracture Energy
 - Flexibility Index (FI)

DISTRICT 11 WINTER SCHOOL Crown Plaza, Greentree Feb., 1, 2017

PA Asphalt Pavement Association Gary L Hoffman, P.E. Director of Technical Services

Agenda

1.

Who we are!

- 2. PAPA Mission and Goals
- 3. PWT Implementation- LTS & HOLA
- 4. Warm Mix Require
- 5. Anti-Strip Additive
- 6. Long Life Asphalt Pavements
- 7. Performance Testing for Mix Optimization
- 8. Higher RAP/ RAS Mixes
- 9. Thinlay Special Provision
- 10. Porous Asphalt Specification
- 11. New Tack Coat (Sect. 460) Spec.
- 12. Upcoming PAPA events you may want to attend

Who we are!

1. Charles Goodhart – Executive Director

cgoodhart@pa-asphalt.org

- 2. Gary Hoffman Director of Technical Services gary@pa-asphalt.org
- 3. Tina Holtzman Office Administrator <u>tina@pa-asphalt.org</u>
- 4. Millie Lombardi Manager of Financial Operations <u>millie@pa-asphalt.org</u>

PA Asphalt Pavement Association Mission

- "To promote and provide to our customers the best available asphalt pavement technology and to represent and serve the common interests of our members."
- Goals:
 - MAINTAIN COOPERATIVE RELATIONSHIPS AND COMMUNICATIONS
 - Ensure Best Quality Products and Pavements
 - SUPPORT GOVERNMENT AFFAIRS AND STRATEGIC ALLIANCES
 - **PROMOTE AND MARKET ASPHALT PAVEMENTS**
 - PROMOTE INNOVATION AND ENVIRONMENTAL AWARENESS
 - Ensure Association Viability

Percent Within Tolerance

PWT

WHAT's PWT?

 Efficiently captures mean and standard deviation in one quality measure

Standard Deviation

PWT - Think of a Field Goal Kicker

What Does PWT Drive? Drives more consistency in materials and construction

- Tighter adherence to producing job mix formula
- Tighter adherence to field density specification requirements

Advantages of PWT

- Well suited for low bids to achieve higher quality
- Contractors = <u>bonuses</u> for tighter adherence to targets
- Contractors = <u>reduced payments</u> for lesser consistency
- Moves focus to targets (NOT minimums)

What's different with PWT spec?

- Adds <u>bonus</u> structure (maximum 4%)
- Adds mix gradation (PCS) as part of payment
- Modifies current "goal posts" approach for 100% payment (good or no good) to a more probabilistic and statistical approach

Payment Equation Changes

17

<u>Current</u> specification (50% mix, 50% density)

- 25% asphalt content
- 25% #200 sieve
- 50% field density
- **<u>PWT</u>** specification (50% mix, 50% density)
 - 30% asphalt content
 - 10% #200 sieve
 - 10% primary control sieve (new)
 - 50% field density

Common to All PWT Specs

18

 <u>Defective lots</u> can be left in place at 70% pay by DE (previously 50% pay)

Allows contractor to terminate lot

- Allows contractor to limit risk when early QC results indicate an issue
- Must stop paving
- > 90% maximum pay
- Must R&R if defective by test results

Current Status

19

Two (2) methods :

1. <u>PWT-LTS (Laboratory Testing Section)</u>

- 1. Fully approved (includes FHWA)
- 2. Acceptance at LTS
- 3. PWT-LTS Use Guidelines/District Memo

2. <u>PWT-HOLA (Hands On Local Acceptance)</u>

- 1. Fully approved (includes FHWA)
- 2. Department Acceptance, Contractor Lab

2016 PWT Summary

158 PWT Projects Let in 2016

	Total Active	SSP included in Advertisement		SSP Used	on Project
District	Project	LTS	HOLA	LTS	HOLA
1-0	9	9	0	6	3
2-0	3	2	1	2	1
3-0	8	7	1	7	1
4-0	3	3	0	3	0
5-0	5	5	0	5	0
6-0	1	1	0	0	1
8-0	25	23	1	24	1
9-0	12	5	7	6	6
10-0	6	5	1	4	2
11-0	7	6	1	2	5
12-0	7	7	0	7	0
Total	86	73	12	66	20

Industry Breakdown of Active Projects					
Prime Contractors	Suppliers (Plants)	Paving Contractors			
(ca.)	(ca.j	(ca.)			
32	57	31			

www.dot.state.pa.us

2016 PWT Summary (As of January 6, 2017)

		Overall Lot Payment Averages		Pay Factor Averages				
	Lots	Average Lot Payment	Average Lot Payment (Cores)	Average Lot Payment (Other)	Asphalt Content	#200 Sieve	Primary Control Sieve	Density (Cores/Optimum Rolling/Non- Movement)
Total	452	1.01	1.02	1.01	101.27	101.12	100.25	101.60
PWT-HOLA	121	1.02	1.02	1.01	102.26	101.98	101.03	101.68
PWT-LTS	331	1.01	1.01	1.00	100.89	100.80	99.95	101.58

	Average Density Pay Factor (Cores Only)					
	Total		HOLA		LTS	
	Lots	Pay Factor	Lots	Pay Factor	Lots	Pay Factor
Total	355	102.03	88	102.26	267	101.96
BPN 1	2	103.00	0	N/A	2	103.00
BPN 2	139	101.82	38	100.82	101	101.92
BPN 3	168	102.21	34	103.24	134	101.95
BPN 4	46	102.60	16	103.61	30	102.06

2016 PWT Summary (As of January 6, 2017)

	PWT	Sec. 409	PWT-HOLA	PWT-LTS
Bonus Pay Lots	336	N/A	101	235
100% Pay Lots	30	420	8	22
Reduced Pay Lots	80	21	12	68
Defective Lots	6	11	0	6
Terminated Lots	0	N/A	0	0
Total	452		121	331

District	Incentives	Reductions	Δ
1	\$163,333.05	-\$55,637.69	\$107,695.36
2	\$46,908.89	-\$18,866.20	\$28,042.69
3	\$66,837.57	-\$18,450.16	\$48,387.41
4	\$83,430.09	\$0.00	\$83,430.09
5	\$88,680.57	-\$20,140.30	\$68,540.27
6	\$0.00	\$0.00	\$0.00
8	\$213,800.95	-\$244,046.31	-\$30,245.36
9	\$104,490.10	-\$45,848.47	\$58,641.63
10	\$156,313.92	-\$4,871.88	\$151,442.04
11	\$144,013.41	-\$20,736.51	\$123,276.90
12	\$100,296.68	-\$26,007.13	\$74,289.55
Total	\$1,168,105.23	-\$454,604.65	\$713,500.58

www.dot.state.pa.us

2016 PWT Summary (As of January 6, 2017)

2016 PWT Summary

(Data from January 1, 2015 – November 23, 2016)

(Sublot Acceptance Test Results for 9.5mm, 12.5mm, 19mm & 25mm Mixes, excludes SMA)

2016 PWT Summary (Data from January 1, 2015 – November 23, 2016)

(Lot Acceptance Test Results for 9.5mm, 12.5mm, 19mm & 25mm Mixes, excludes SMA)

www.dot.state.pa.us

PWT - Any Questions?

- What about municipal projects?
- What type of paving projects (base, pavement design, shoulders, etc.)?

Warm Mix Asphalt

What's WMA?

- Definition of Warm Mix Asphalt Warm Mix Asphalt (WMA) is the generic term for a variety of technologies that allow producers of Hot Mix Asphalt (HMA) pavement material to lower temperatures at which the material is mixed and placed on the road. It is a proven a technology that improves the "lubricity" of the binder.
- <u>http://www.fhwa.dot.gov/innovation/everydayc</u> <u>ounts/edc-1/wma.cfm</u>

Publication 408 SECTION 411- SUPERPAVE MIXTURE DESIGN, STANDARD AND RPS CONSTRUCTION OF PLANT-MIXED WMA COURSES

411.2 MATERIAL - Section 409.3 with additions and modifications as follows

Table A

Job-Mix Formula

Composition Tolerance Requirements of the Completed Mix

Section 409.2(e), Table A. Revise the Temperature of Mixture (F) requirements as follows:

Temperature of Mixture (F)					
Class of Material Type of Material		Minimum*	Maximum*		
PG 58-28	Asphalt Cement	215	310		
PG 64-22	Asphalt Cement	220	320		
PG 76-22	Asphalt Cement	240	330		
All other Binders	Asphalt Cement	The higher of 215 or the minimum temperature specified in Bulletin 25 minus 45	As specified in Bulletin 25		

Publication 408 SECTION 411- SUPERPAVE MIXTURE DESIGN, STANDARD AND RPS CONSTRUCTION OF PLANT-MIXED WMA COURSES

411.2 MATERIAL - Section 409.3 with additions and modifications as follows

Table A

*The minimum and maximum temperatures shown in Table A for each Class of Material represent the <u>master temperature range for a</u> <u>completed WMA mixture</u>. The Producer must include a smaller production temperature range that does not exceed 50F and does not fall outside the master temperature range in the Producer QC Plan for normal paving.

Benefits of WMA

- Benefits of Warm Mix Asphalt
 - Improves asphalt mix compaction density
 Improves consistency of asphalt coating
 - Improves consistency of asphalt coating
 - Extends the paving season
 - Allows asphalt mix to be hauled longer distances
 - Improves working conditions by reducing exposure to fuel emissions, fumes, and odors
- http://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/wma.com

WMA Implementation by PennDOT

- 2014 9 of 11 Engineering Districts WMA
- 2015 10 of 11 Engineering Districts WMA
- 2016 11 of 11 Engineering Districts WMA
- 2017 100% WMA

Anti-Strip Additive – WMA & HMA

Asphalt Stripping:

The loss of bond between aggregates and asphalt binder that typically begins at the bottom of the HMA layer and progresses upward. When stripping begins at the surface and progresses downward it is usually called <u>raveling</u>.

Need for Anti-Strip Additive

"Cost Benefit Analysis of Anti-Strip Additives in Hot Mix Asphalt with Various Aggregates"

FINAL REPORT May 15, 2015

Donald Christensen Advanced Asphalt Technologies, LLC

Dennis Morian William Wang Quality Engineering Solutions, Inc.

Anti-Strip Additive

- What is an AS Additive?
- Concerns:
 - ➤TSR Testing
 - >AS Approval List (What about Evotherm?)
 - Basis for quantity of AS Additive
 - CT S-16-001 Step 2 Revises Pub. 408-Sect. 411, 311, POM-Sect. C04-02, C04-03, Pub 242-Ch5, Bulletin 27-Chapters 2A & 2B
 Implement 2017

Need for Anti-Strip Additive

2017- Put at least .25% AS in all mixes
Long Life Asphalt Pavements

Longer Life Asphalt Pavements

<u>TQI TECHNICAL TEAM GOAL</u> - Develop LLAP Specifications – Identify Best-in-Class Practices for Pavement Design, Materials Mix Design, Materials Testing, Construction Practices, & QA - QC

- Limited initially to Interstate Highways & Look-a-Likes
- Totally <u>new</u> requirement will be Performance Testing for Crack Resistance and Rutting.
- Eventually incorporate into PUB 408 & other Publications

TQI - LLAP Specification Work Group Schedule

- PennDOT, PTC, FHWA, Industry Coordination Meeting – October 2015
- LLAP Spec Draft for APQIC January 2016 (Completed)
- CT Step 1 for Review April 2016 (Completed)
- CT Step 2 for Review June 2016
- Request Candidate Pilot Projects (2017 Construction Season) – November 2016

LLAP – To get the initiative moving, the team assembled a large list of Best Practices. These Best Practices are incorporated into a series of Standard Special Provisions which were approved. SOL was sent to the Districts requesting pilot projects. Three projects have been submitted to date.

Long - Life Asphalt Pavements (LLAP) Pavement Design

- Use Guidelines
- PavementME (April Training)
- Perpetual Pavement Design
- Limiting Strain Design

Long - Life Asphalt Pavements (LLAP) Asphalt Mix Design

- Minimum Effective AC Content (P_{be})
- SuperPave Design Volumetric Adjustments
- Binder Modification (i.e. polymer, GTR, Fiber, etc.)

Long - Life Asphalt Pavements (LLAP) Asphalt Mix Design

- SMA ON INTERSTATES
- FULL DEPLOYMENT OF WMA
- Use of Anti-Strip Additive
- ASPHALT RICH BASE
- Optimized Mix Design (i.e. Performance Testing)

Long - Life Asphalt Pavements (LLAP) Construction Specifications

- Longitudinal Joint Density Specification
- RIDE SPECIFICATION
- MTV Required
- Tack Coat Requirements (New Specification)

% WITHIN TOLERANCE (PWT) ACCEPTANCE

• INCENTIVIZE CRITICAL ELEMENTS (I.E. MAT DENSITY)

Optimized or Balanced Mix Design

- Crack Resistant
- Rut Resistant
- Resistant to Moisture Damage

PAPA Proposed Crack Performance Testing

- Virgin vs. 15% RAP mix
- Design Binder vs. +0.5% AC
- Lab mix vs. Production mix
- Short-term vs. long-term aging
- 16 cells in matrix

Balanced Mix Design: ETG Definition

 Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure

Disk-Shaped Compact Tension (DCT) Test

- ASTM D7313-13
- Loading Rate:
 - Crack Mouth Opening Displacement
 - CMOD Rate = 1.0 mm/min
- Measurements:
 - CMOD
 - Load

Semi-Circular Bend (SCB) Test

- Multiple variants exist
 - Early work in Europe
 - Simultaneous cold (Marasteanu et al. MN)
 and intermediate temperature (Mohamed et al. LA) versions
 - Recent work from Al-Qadi et al. (IL) → AASHTO TP 105
- AASHTO TP 105 (I-FIT)
 - Line load control, loading rate = 50 mm/min
 - Test temperature = 25 deg. C
- Measurements:
 - Displacement
 - Load
- Outcomes
 - Fracture Energy
 - Flexibility Index (FI)

Higher RAP Mixes

51

Higher RAP Mixes

- NCHRP Report 752 (Project 9-46)
- STIC Materials TAG Initiative
- PSU LTI Task Order #10
- CT S 015-15 Issued
- PAPA had many Questions Suggestions

Higher RAP Mixes

- Meeting/PennDOT, FHWA and PAPA
- Outcome of Meeting:
 - Move to Replacement Binder Ratio (RBR)
 - Change from 2 Tiers to 3 Tiers
 - Fier 1 no change (0.20 ≤ 19 mm, 0.25 > 19mm)
 - Tier 2 consensus properties of aggregate
 - Tier 3 aggregate and binder testing
 - Standard deviations of RAP properties
- CT Step 2 responses to comments out
- Possible CT 3

HMA WMA Pavement Materials

Asphalt Binders – "Neat" and Modified

Asphalt – the liquid

- The glue that binds the aggregate
- Must be heated to use
- Modified with additives to enhance high temperature performance (e.g.: to improve rutting resistance or cracking)
- Chosen based on climate

The Performance Grade of a binder is based on the climate where the pavement is being constructed and describes the probable high and low temperatures the pavement can be expected to reach, in Celsius. In Pennsylvania, that range is primarily 64 C down to minus 22 C but some areas in PA may PG 76-22.

PG 64 - 22

RAP Impact on Performance Grade

- RAP is Reclaimed Asphalt Pavement
- Asphalt in RAP is aged (oxidized) and typically harder compared to virgin asphalt
- For higher amounts of RAP in mixture (greater than RBR=0.25) will need to verify PG of RAP binder and determine required PG of virgin binder.

TR-448A (6	6-15)	JOB MIX FORMULA REPORT						Supplier Code HIM46H41			Material Class SR9.5			
		Per	nDOT Mix D	esign Desig	gnation			Design ESAL Range).3 to < 3 Million		
			Year Number					Aggregate Skid Resistan				ce Level H		
	2015	2015 H11				Mixure Final PG Binder Gra				de PG6422				
						Asphalt Mix Typ				HMA				
nonneud	lier IME/Des	Design Number (Ontional)				Gradation Classification					Coarse-Graded			
pennsyu		0525				Orbital Approval Date								
DEPARTMENT OF TRAN	NSPORTATION		`					104		-	4	-	od	
Supplier Name	Highway	Materials Inc.	Location	ocation PLYMOUT				H MEETING PLT #2			ppiov	eu		
ECMS Number	riigiiway	Purchase Order N				0. 4			408 Spec				fix Time	
ECM3 Number		Plant Type AD				Plant Size			05 Dr) Wet(s)			
Six & Section				Fiant Type		AD		· ·	iant Si	ze				
Contractor				Location							-	1-1		
Material Supplier		Materia	5		Product Na		lame		Material Spec.		rav. %	Absorption		
HMC46B14		207 (Agg) - B3						8.200	00 2.80		0.74		
AXON3 15		1 (Asphalt Cement) - PG582			328					4.300		1.031		
HIM46G41		17 (Hot Rap Design) - RAP								25.000 2.8		0 0.00		
HMC46A14		207 (Agg)-B1						4.100	2.645		1.24		
HMC46B14		203 (A	A8					3	0.400	2.82	8	0.49		
PBFH0 15		1 (Asphalt	G5828						1		0			
SUIT3 15	1 (Asphalt	1 (Asphalt Cement) - PG5928								1.030				
					CODW		ELC.N.							
		#200 #40		JUB MIA	FORMU	LA AND DE:	SIGN	2/07	4/20	•				
A.C. / Sleve Size		#10	# #	#30	#16	#8	#4	3/8	1/2					
Dissign Target	5.5	5.0 7	10	15	24	40	65	95	100					
% Virgin A.C. 4.3				% Reclaimed A.C. from RA				1.20 Tota			al % Asphalt (Pb)		5.5	
Virgin A.C. PG B	Inder Grade	PG5828 % Reclaimed A.C.				rom KAS			% Ef	6 Eff. Asphalt Binder (Pbe)			5.1	
Calc. Asp. Film Thickness			Total Reclaimed Bi			nder Ratio 0.22		Fines Asphalt (F/A) Ratio			0	1.0		
				MIX CHAR	ACTERIO	TICE (CYRA	TORY							
Design		Mold Diamotor # Gyrations		# Gyrations		# Gyrations Vol		Volds in Mineral		Theoretical Max.		Bu	Bulk Sp. Grav. of	
ESAL Range		(mm) at Ninitiai		at NDesign		at NMaximum	t NMaximum Aggr		A)	Sp. Grav. (Gmm)		M	Mixture (Gmb)	
0.3 to < 3 Million		150 7		75		115	115		16.2		2.573		2.470	
Bulk Sp. Grav. of		Mixture Mass % Air Volds		% Air Volds		% Air Volds	Air Volds Volds		s filled with		ical Max.	Bu	Bulk Density of	
Combined Aggr.(Gab)		to Compact	to Compact at Ninitial		sign a	at NMaximum	Maximum Asphal		alt (VFA) %		Density (Ibs/fts)		Mixture (Ibs/ft3)	
2.787		4,930.0	14.9	4.0	D	2.5		75.0		16	30.2		153.7	
				ASPHALT	CONTE	NT TEST ME	THOD							
A.C. Test Method		External Party Oven Make/Mo		del Furna		e Temp (°C)	mp (°C) Samp		for C.F	.F. Asphalt C.		F. 200 C.F.		
PTM No. 757	,	GILSON	/HM-378			538.0		1,300	0		0.42		0.30	
				MOISTUR	RE SUSC	EPTIBILITY	DATA							
A.C. Supplier		Name		Dry PSI S	trength	Wet PSI S	trength	TSR V	alue	Date of 1	ISR Test	Dat	e of Boil Test	
PBFH0 15													2/1/13	
AXON3 15					89.8		103.1		7	2/27/15		1		
SUIT3 15													2/1/13	
00110 10	L										_	1		
			COMBIN	NED AGGR	EGATE (CONSENSUS	6 PROPI	ERTIES				Tela	N/ Declarat	
AASHIOT1/6	AA Eloc A	Else Ager Angularity AST			I D5821 - Coarse Aggregate			gate Angularity		ASTM D4791			And From BAD	
Faulyslency (%)	Uncompacted Volds (%)							Flat / Elong		igated Particles		-9	d/or RAS	
Equivalency (76)	Chicoli	40.7			Face Crush		% 2 Face Crush		5:1		3:1 SMA only			
08 N	96.0 48.7			100.0 100.0				1.2		2	2.0		75.0	
80.0		10.1	_							-				
Designed By :	Christoph	er Boyle	D	esigned By	y Certific	ation ID :	201	5		Des	igned Da	te :	3/16/15	
Designed By : Submitted By :	Christoph John Sav	er Boyle astio	D	esigned By Jubmitted B	y Certific By Certifi	ation ID :	201	5		Des	igned Da mitted Da	te: ate:	3/16/15 4/22/15	
Designed By : Submitted By : Approved By :	Christoph John Save	er Boyle astio ccall	D	esigned By Submitted B	y Certific By Certifi V Certific	cation ID : ication ID : cation ID :	201 252	5 8		Des Sub	igned Da mitted Da proved Da	te: ate: ite:	3/16/15 4/22/15 4/30/15	

ThinLay

58

ThinLay

DESCRIPTION – This work is the construction of a thin lift wearing course (Called **ThinLay**) of plant-mixed, dense-graded WMA, **6.33** mm (1/4 inch) Nominal Maximum Aggregate Size (NMAS), on a prepared surface using a volumetric mixture design developed with the Superpave Gyratory Compactor.

ThinLay 6.33 mm WMA wearing course is a preservative treatment used to extend the service life of a pavement without significantly improving the pavements structural capacity. It is intended for use on existing pavements with minor surface distresses like raveling and low-severity cracking and with no structural distresses.

ThinLay 6.33 mm WMA Wearing Course is a virgin mixture design with high asphalt content, placed at 1" or > in depth.

ThinLay Special Provision

- 6.3 mm 100% passing 3/8 in.
- Dense –graded (6 sieve sizes) SRL
- PG 76-22 polymer modified asphalt
- N design = 75 gyrations
- Design voids = 4.0%
- Min. VMA = 16.5
- No RAP or RAS
- Place at greater than 50 F
- Optimum Rolling Pattern

Use Guidelines

- Only on structurally sound pavement
- Substitute for micro-surfacing
- For correcting surface distresses only

61

Consider grinding PCC first

Compaction

- Due to 1" + overlay, mat cools quickly.
- Rollers. Use an adequate number of <u>static steel-wheel</u> rollers as specified in Section 108.05(c)3 to keep up with the continuous paving operation and having a manufacturer's certified metal weight of not less than 10 tons.
 - Operate rollers according to manufacturer's recommendations. Use rollers equipped with a watering or soapy watering system that prevents material from sticking to the rollers. Do not use pneumatic-tire rollers.
- **Do not use rollers in vibratory mode** unless it can be demonstrated during the trial demonstration specified in Section III.(p) of this special provision and to the satisfaction of the Inspector in Charge that no detrimental effect to the pavement structure results from the vibration.

ThinLay

- PennDOT conducted a study of 4 ThinLay projects over the past three years. A final research report has been drafted and awaiting approval.
- A CT of proposed specifications was out for review and comment.
- A SSP should be available soon for use in projects and incorporation in PUB 408, PUB 272, etc. by next spring.
- Any asphalt producer will be able to make this product.

ThinLay

Thin overlays are an added solution to pavement preservation. They are economical, long-lasting, and effective in treating a wide variety of surface distresses to restore ride quality, skid resistance, and overall performance. https://www.youtube.com/watch?feature=player_embedded&y=UdkBDTh4rJl

Porous (Permeable) Asphalt Pavements In PENNSYLVANIA

J.D. Eckman Parking Lot, Atglen, PA

- More stringent Stormwater Mgt. Ordinances
- % Impervious Surfaces
- Various BPM's
- Unique Specifications for Porous Pavements

Reference Material Utilized

- NAPA IS-115 & IS-131
- UNH Stormwater Center Design Specifications for Porous Asphalt Pavements –
- MNDOT Porous Asphalt Pavement Performance in Cold Regions

- Advantages Identified
 - Reduced Surface Run Off
 - Recharge Ground Water
 - Replace "Open" Retention Basins
 - > Allow for Additional Parking Space

- Results From STIC TAG Spec Project
 - > PUB 408, Section 420 Pervious Bituminous Pavement System
 - PUB 242, Appendix M Pervious Surface Course Design
 - > PUB 594, Chapter 14.7 Pervious Pavement
 - PUB 23, Maintenance Manual

 Pervious System Design FIGURE K.1 PERVIOUS SYSTEM DESIGN

70

Pervious Pavement Construction

- 2 Test Sections Check Permeability Using ASTM C1701
- DO NOT Compact Subgrade
- Sand Bottom/Class 4 Geotextile on Sides
- > 6"-36" Crushed Rock Reservoir
- Compact Crushed Aggregate and Bituminous Layers Using 10 Ton Steel Wheeled Loader in Static Mode (1-4 Passes)

- Pervious Pavement Maintenance Requirements
 - DO NOT Use Sand or Anti-Skid
 - Pressure Wash and/or Vacuum Surface Annually
 - Monitor or Test Permeability Periodically
 - DO NOT Surface Seal

New Tack Coat Specification Requirements Section 460

Tack Coat

CSS-1h tack coat (60% residue)
0.06 Gal/SY tack application rate
0.04 Gal/SY min residue on pave

Change in Tack material

- New Tack is similar to CSS-1h emulsified asphalt.
 - The Minimum residual asphalt is 57% instead of 28%
 - The application temperature is 90F to 150F (AET -75F to 140F)
- Non-tracking Tack is also an option now.
 - Minimum residual asphalt is 50%.

Change to Application Rate

Surface Type	Uniform Asphalt Residue Rate (RR) (Gallons per square yard)
New Bituminous Paving	0.03 to 0.05
Existing Bituminous Paving	0.04 to 0.07
Milled Surface (Bituminous & PCC)	0.04 to 0.08
Portland Cement Concrete	0.04 to 0.07

Test Section

- The specification includes a test section.
 - 100 Ft. test section required to ensure the proper application is being applied.

78

- Feb. 2-9 Mid-Atlantic QAW
- March 15 PAPA Central Regional Tech Mtg March 14 PAPA Western Regional Tech Mtg March 16 PAPA Eastern Regional Tech Mtg
- Aug. 1-2 PAPA/DOT Bus Tour-District 6

Please Contact Tina Holtzman @ 717-657-1881 or <u>tina@pa-asphalt.org</u> for more Information!

Questions??

Thank you!!

To contact

Pennsylvania Asphalt Pavement Association 3540 North Progress Avenue, Suite 206, Harrisburg, PA 17110-9647

www.pa-asphalt.org 717-657-1881

F 🗵 🚻

Charles C Goodhart, Executive Director – <u>cgoodhart@pa-asphalt.org</u> Gary L Hoffman, P.E. Director of Technical Services – <u>gary@pa-asphaslt.org</u>

<u>Committed 70:</u> Safe, Smooth, Sustainable, Long Lasting Pavements!

A FREE Simplified Pavement Design Tool

What Is PaveXpress?

"A free, online tool to help you create simplified pavement designs using key engineering inputs, based on the AASHTO 1993 and 1998 supplement pavement design process."

- Accessible via the web and mobile devices
- Free no cost to use
- Based on AASHTO pavement design equations
- User-friendly Drop down menus
- Share, save, and print project designs
- Interactive help and resource links

Brief Overview

- Software developed & updated by NAPA
- Provide FREE online tool to develop technically sound pavement designs for roadway pavements
- Provide a user-friendly, visually appealing, pavement design tool accessible to users on a variety of devices
- Provides a FREE alternative to ACPA Streetpave
- Provide resources to enhance understanding and comfort with asphalt pavement design

Pave Xoress Provides technically sound pavements designs using:

- Flexible: AASHTO '93
- Rigid: AASHTO '93 w/ '98 Supplement
- Parking lot guidance (Flexible only)

AASHTO has developed MEPDG software (PavementME) for high volume roads, but a gap has developed for local roads and lower volume roads. Thus the impetus for PaveXpress

- Utilize for new pavement designs (several DOTs testing)
- Utilize for design of overlay projects (Version 2)
- Municipal Engineering Consultants are utilizing
- Utilize as a comparator for pavement designs

MEPDG - Pavement ME

AASHTOWare Pavement ME Design (Version 2.2)

- Pavement ME Design is the next generation of AASHTOWare® pavement design software, which builds upon the mechanistic-empirical pavement design guide, and expands and improves the features in the accompanying prototype computational software. ME Design supports AASHTO's Mechanistic-Empirical Pavement Design Guide, Interim Edition: A Manual of Practice. ME Design is a production-ready software tool to support the day-to-day pavement design functions of public and private pavement engineers.

Effects of PennDOT Implementation of the AASHTO ME

- Development of the MEPDG
 - How the Pavement Design got to where it is at this time (from AASHTO 1961 to Present)
 - AASHTO Road Test 1958-60
 - Procedures used for 40 years
 - PennDOT to implement this year

AASHO Road Test (late 1950's)

AASHTO Pavement Design Guide

- Empirical methodology based on AASHO Road Test in the late 1950's
- Several versions:
 1961, 1972 (Interim Guide)
 - 1986, 1993 (Same equation, additional inputs)
- Many deficiencies after 40 years!

AASHTO MEPDG

- Development of the MEPDG
 - The MEPDG is based on mechanistic empirical design concepts.
 - **Mechanistic:** Design procedure calculates pavement responses such as stresses, strains, and deflections under axle loads and then accumulates the damage over time.
 - Empirical: Damage is correlated with actual performance of pavements.
 - MEPDG vs. AASHTO '93.

Some Specific Advantages: HMA

Old AASHTO 1960-93	New AASHTO ME Design
 Structural design provides only SN, not HMA thickness! No connection of asphalt binder grade to performance HMA & base layer coefficients not accurate ESALs used for traffic Climate not considered Rehab does not consider reflection cracking 	 Directly provides HMA thickness to prevent fatigue cracking & rutting Asphalt binder grade directly related to fatigue cracking, rutting, and low temp cracking HMA dynamic modulus & creep compliance meas. Actual axle loads & types Climate directly considered Rehab directly considers reflection cracking

AASHTO ME Input Screen

AASHTOWare Pavement ME Design Version 2.0 Build 2.0.19 (Date: 01/23/2014)						
Menu					Ψ×	Progress 🛛 🕹 🗙
Recent Files 🔹 📄 💦 🛄				🛛 💽 Stop All Analysis		
New Open SaveA	s Save Save Al Close Exit Run Bat	ch Import Export Undo Redo Help				Example HMA Pyt Design 97
						Duranias Integrated Climatic 100
Explorer 4 ×	Example HMA Pvt Desi:Project Example	e HMA Pvt Design:Traffic Example HMA Pvt Desig:C	limate		• ×	Futurining integrated climatic 100
Projects Projects Projects Projects	General Information	Performance Criteria		Limit	Reliability	Extending climate solution 100
	Design type: New Pavement	Initial IRI (in./mile)		60		Preparing Thermal Cracking 100
Climate	Pavement type: Flexible Pavement	Terminal IRI (in./mile)		170	90	Running Thermal Cracking 100
AC Layer Properties	Design life (years):	AC top-down fatigue cracking (ft/mile)		20000	90	Asphalt Damage Calculations 100
Layer 1 Flexible : Defau	Base construction: April 2015	AC bottom-up fatigue cracking (percent)		15	90	Asphalt Rutting and Fatigue 100
Layer 2 Non-stabilized	Pavement construction May	AC thermal cracking (ft/mile)		1267	90	Asphalt IRI 100
Layer 3 Subgrade : A-1	Traffic opening: June VIII 2015 VIIII VIIIII VIIII VIIIII VIIII VIIIII VIIIII VIIII VIIII VIIIII VIIII VIIIII VIIII VIIIII VIIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIIII	Permanent deformation - total navement (in)		0.75	90	
Project Specific Calibration	Special traffic loading for flexible payements	Permanent deformation - (C only (in)		0.75	an	
Rehabilitation Flexible	special name roading for nextble pavements	remanent deromation - Ac only (in.)		0.75	50	
	🛛 🌗 Add Layer 🗯 Remove Layer					
Bonded Rigid		Layer 3 Subgrade:A-2-4			-	
Sensitivity						
Optimization		⊿ Unbound			*	
Excel Output Report		Layer thickness (in.)				
Multiple Project Summary		Coefficient of lateral earth pressure (k0)	 ✓ 0.4 ✓ 0.5 			
Batch Run	Click here to edit Layer 1 Flexible : Default asphal	▲ Modulus				
🗄 💬 ME Degion Calibration Eactor		Resilient modulus (psi)	✓ 15000		=	
ME Design Calibration Pactors		A Sieve				
	Click here to edit Layer 2 Non-stabilized base : A-	Identifiers	▼ A-2-4			
	2359 2 59 5 9	Display name/identifier	A-2-4			
		Description of object	Default Material			
	Click here to edit Layer 3 Subgrade : A-2-4	Approver	4 (4 (2014)			
		Date approved	1/1/2011			
	the second s	Date created	1/1/2011			
	the A there the	County			-	
		Date approved				
		Date that the approver accepted object/material/project				
	and the second					
	Compare				ЛΧ	
	- Compare	To - Run Compar	e 🏷 Clear Comparison			
	Diaplay Name Project 1	Project 2 Comparison Mar				
		Frojeci Z Companson Met				
4 III >	🔄 Output 🔀 Error List 💳 Compare					
		PvD				🔺 🉀 .ull 🛱 🌒 12:25 PM

AASHTO ME Basics

- MEPDG Basics Design options within the software
 - New or reconstructed AC pavement
 - New or reconstructed Jointed Plain Concrete Pavement (JPCP)
 - AC Rehabilitation AC overlay on existing AC
 - AC Rehabilitation AC overlay on existing JPCP
 - JPCP Rehabilitation Concrete Pavement Restoration (CPR diamond grinding) and Unbonded JPCP overlay on an existing JPCP

AASHTO ME Basics: Some Details

- MEPDG Basics
 - Guidance to perform pavement design using the software. Iterative process and including the following steps:
 - Trial design input.
 - Analysis by the software, including key distresses, and IRI.
 - Predicted performance is compared to the design performance criteria at a desired level of reliability.
 Modified designs are reentered into software and analysis is performed again.

Improved Engineering Design

- Due to its comprehensive development & calibration to local pavement performance, the new AASHTO ME provides far more accurate design! This translates into lower construction & maintenance/rehab costs over time.
- Then, design reliability is then used to provide a safety factor in structural design. Higher traffic typically requires higher design reliability.
- Certain distresses, such as bottom up fatigue cracking can justify higher design reliability also, due to its importance in good performance and high maintenance/rehab requirements.

MEPDG - Pavement ME

PennDOT IS IMPLEMENTING Pavement ME

- Software developed by AASHTO
- Updated via NCHRP Projects
- Hired Firm, ARA, to assist with implementation 2015
- Fall 2015 started to calibrate software
- Spring started training for users
- July 1, 2016 begin designing pavements with Pavement ME

http://www.aashtoware.org/Pavement/Pages/default.aspx

MEPDG - Pavement ME

Cost of Pavement ME License

Individual Workstation License Description Individual Workstation

Site License Description Site License – Up to 9 concurrent users Site License – Up to 14 concurrent users Site License – Up to 20 concurrent users Annual License Fee \$5,000

Annual License Fee \$20,000 \$30,000 \$40,000

Longitudinal Joint Specification Performance

Goal – Better Densities

• Our focus has been on getting better joint density due to performance issues of under compacted material.

Goal - Better Densities

"The amount of air voids in an asphalt mixture is probably the single most important factor that affects performance throughout the life of an asphalt pavement."

- E. Ray Brown, NCAT Report 90-3

"Compaction is the most important factor in the performance of an HMA pavement."

- HMA Paving Handbook, US Army Corps of Engineers

Result - Better Densities

PA DOT Longitudinal Joint Data Summary			
Year	Min. Spec. Limit	Avg. Joint Density	h h
2008	N/A	88.9%	
2009	N/A	89.2%	
2010	N/A	88-90%	
2011	≥ 89%	91.0%	
2012	≥ 89%	91.6%	
2013	≥ 89%	91.4%	
2014	≥ 90%	92.3%	
2015	≥ 90%	92.6%	

On our RPS and NHS routes we have gained in terms of density.

Longitudinal Joints

- 124 Projects with Specification
- 493 Total Lots (2464 cores) approx. 1167 miles
- Raised min. spec. limit to ≥ 90% density for 2014 construction (Pub. 408 2011/Change 5)

2015 Longitudinal Joint Density Projects Incentive/Disincentive Summary

Pay Adjustment	Total \$
Bonus	\$1,620,868
Negative Adjustment	\$149,851

Increased Projected Life of Joints Due to Improved Densities in PA, 2008 thru 2015

Joint Density Up

 We have done well in raising the density at our joints. This will pay off.

 Now let's focus on making sure we get the density without causing cracking.

Goal - Dense Joints that Don't Crack

- Better densities mean more roller passes
- More roller passes mean more chance to crack the pavement in the area of the joint
- Tender mixes will make this tendency worse. Be on your guard to ensure you are not creating cracking.

What We Don't Want

- Note the crack that formed at the unsupported edge.
- This illustrates why rolling just inside of the edge is not desirable.
- This mix had a tender zone and cracks formed at the edge of the roller drum.

Make sure rollers overhang edges

Watch what is Going on at the Screed

Project:

•

- Paved June 2015
- Wedge Joint
- No joint spec
- Paver leaving shadow in mat about 3" from joint
- Next winter?
 - Often watching the mat closely can pick up an issue that could be corrected

Tack at Unsupported Edges

 Apply tack coat slightly beyond the edge of the lane to be paved

You Want to See Tack Coat

Note the extra 6 inches of tack

Overlap Paver Screed 1" (to $1 \frac{1}{2}$ ")

 Consistent proper overlap is key

 Operate paver so that the edger plate on the screed overlaps the previously placed pavement by 1 inch (to 1 ¹/₂ inches)

Conclusion

- Density is important, so get it
- Watch details so cracking doesn't happen
 - Roller passes, overhang
 - Roller speed
 - Stay out of tender zone
 - Tack application
 - Watch the screed
 - Use your eyes to look for issues

Implementation

117

- CT1 comments addressed.
- CT 2 should be out in a week or 2
- Specification should be approved by July 1.
- Change should be in Change 1 of 2016 Pub. 408.
 - Change 1 effective date is October 7, 2016.
 - In contracts effective December 16, 2016

Tack Coat Specification

ASPHALT PAVEMENT DISTRESS

TYPES & REPAIRS

TYPES OF PAVEMENT DISTRESS

- Cracking
 - Fatigue
 - Transverse
 - Block
 - Edge
- Potholes

- Surface Deformation
 - Rutting
 - Corrugation/ Shoving
 - Slippage Cracks
- Surface Defects
 - Raveling
 - Bleeding
 - Polishing

Select Appropriate Repairs for Observed Distresses

Non-Structural vs. Structural Problems

Specific Methods of Bituminous Repairs

- Patching
- Crack Sealing
- Surface Treatment
 - Seal Coat
 - Slurry Seal
 - Micro-surfacing
 - Non-structural overlay
 - ThinLay
- Full Depth Reclamation
- Structural Overlay

Late Season Paving

SOL 495-15-08 Issued August 17, 2015 SUBJECT: Asphalt Weather Restrictions/Requests to Extend the Paving Season

- POLICY & PROCEDURE TO REVISE PUB 408, SECTION 409.3(B) – WEATHER LIMITATIONS
- ISSUED AS A STANDARD SPECIAL PROVISION (SSP)
- SSP INCLUDED IN ALL PROJECTS LET AFTER 08-14-2015
- WILL BE INCLUDED IN NEXT PUB 408 UPDATE

SOL 495-15-08 What changed?

SUBJECT: Asphalt Weather Restrictions/Requests to Extend the Paving Season

- EXTENSION TIME PERIOD MARCH 15 TO APRIL 1 & OCTOBER 31 TO NOVEMBER 20
- SUBMIT WRITTEN REQUEST TO DE
 - PROVIDE JUSTIFICATION WITH A WORK SCHEDULE PAVING PLAN
 - USE WARM MIX ASPHALT
 - AGREE TO SUPPLY WMA AT OR BELOW HMA UNIT PRICE
 - AGREE TO NO ADDITIONAL COSTS FOR MEANS, METHODS, OR MATERIALS
 - COMPLETE WORK BY APPROVED COMPLETION DATE
- A FINAL ACCEPTANCE CERTIFICATE WILL NOT BE ISSUED
 TO MAY 1 OF THE FOLLOWING YEAR FOR NOVEMBER WORK

What still needs to change? Asphalt Weather Restrictions/Requests to Extend the Paving Season

- ELIMINATE ALL DATE RESTRICTIONS
 - A NUMBER OF STATE DOT'S HAVE MOVED TO "NO DATE" SPECIFICATION (MD, KS, CA, NJ & OK)
- RETAIN WET SURFACE RESTRICTION & AIR AND PAVEMENT SURFACE TEMPERATURE OF 40° F - 35° F if WMA Used

Urban RAP

Urban RAP Opportunity

- More RAP Being generated than recycled
- 2.9 + Million Tons in D 6 NJ has over 11 Million Tons
- Will become a bigger issue in future
- What do we do?
- PAPA Proposal to PAG
 - Generate less RAP <u>ThinLay</u>
 - Higher RAP Mixes
 - 100% RAP Mixes
 - FDR Projects
 - Logistics Study
 - Suggestions
- Task Force to be formed to study make recommendations

