
SR28 A55 Pavement Design

Thomas S. Adams, PE – District 11 Pavement Engineer

- 13.7 Miles of 1984 Reinforced Concrete Pavement
 - 2009 CPR
 - 2004 CPR

• Scope?

Method	Paving Policy Estimate	Engineered Estimate
Patch & Overlay	\$30,000,000	\$30,000,000
Break & Seat/Rubbilization	\$50,000,000	\$35,000,000
Unbonded Concrete Overlay	\$50,000,000	\$40,000,000
Reconstruction	\$50,000,000	Same

- Patch & Overlay
 - Complex joint pattern
 - Difficult to match underlying joints with sawcut.
 - Subsequent projects have increasing likelihood of missed sawcuts.
 - Risks undercuts

• Scope?

Ç

Method	Paving Policy Estimate	Engineered Estimate
	\$30,000,000	\$30,000,000
Break & Seat/Rubbilization	\$50,000,000	\$35,000,000
Unbonded Concrete Overlay	\$50,000,000	\$40,000,000
Reconstruction	\$50,000,000	Same

- Break & Seat/Rubbilization
 - Resolves complex joint pattern problem.
 - Saves money versus reconstruction.

Rubbilization

Break & Seat

•	Recommended for reinforced concrete	Not recommended for reinforced concrete
•	NOT recommended for poor subgrade	Less affected by poor subgrade
•	Increased construction variability	Less to go wrong during construction
	Fail proof-roll	Less expensive (\$2/SY)
	Exposed rebar must be removed	Stronger structure
•	More expensive (\$4/SY)	
•	Weaker structure	

• Pub 242 wants a 16.0" bituminous overlay!

Existing Materials to be Overlaid:

Cement Concrete (Good condition, < 5% patching)	0.40
Cement Concrete (Fair condition, < 10% patching)	0.30
Cement Concrete (Failed - no patching or > 10% patching)	0.25
Cracked/Break and Seated Cement Concrete	0.25
Bituminous Concrete	0.30

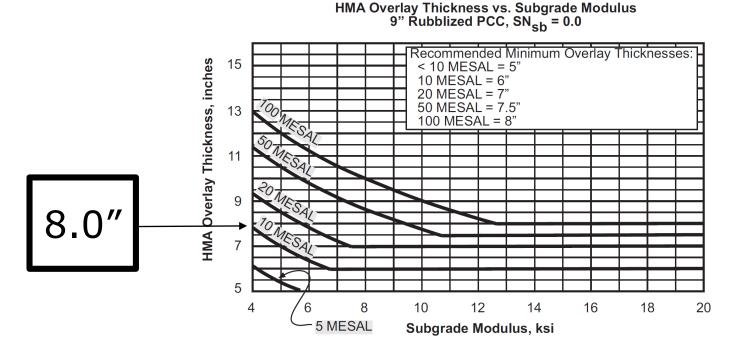
AASHTO 93 suggests layer coefficient between 0.20 to 0.35

Use 0.35

Overlay thickness 16.0" to 13.0"

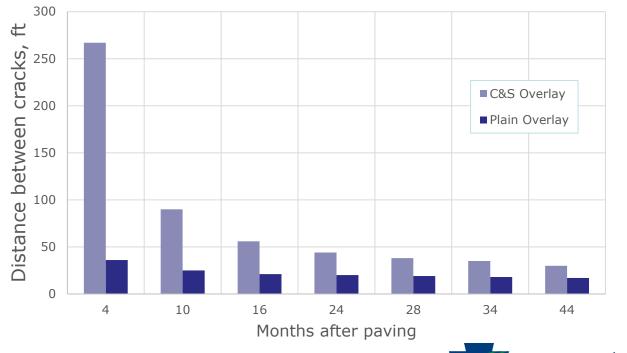
- Other help
 - Frost heave
 - Subgrade Resilient Modulus adjustment
 - CBR*1500 instead of CBR*1000
 - Lab testing showed in-situ density similar as that used for CBR test
- 8.5" Bituminous Overlay

Is this going to be OK???


Fig. 1, D-11 PME

• AASHTO 93' Method

• Pavement-ME



- Overlay thickness?
 - NAPA Rubbilization Design Guide

- Break and seat on reinforced concrete?
 - Illinois SR 97, reflective cracking survey of 3" bituminous overlay of reinforced concrete pavement

• Initial:

• C&S w/16.0" Bituminous Overlay; Cost est. \$50,000,000

• Actual:

• C&S w/8.5" Bituminous Overlay; Cost act. \$35,000,000

> <u>\$15 Million DIFFERENCE</u> Structural Coefficient Break & Seat Subgrade Modulus Correlation

Crack and Seat with Asphalt Overlay

Greg Tomon, QC Manager Lindy Paving

- Lindy's performed 12 C&S projects since 1999
- The projects variety from :
 - Interstates
 - 3 and 4 digit SR's
 - City busways

7 Major interstates:

- SR 60 Section B16 paved in 1999
- SR 80 Section A04 paved in 2000
- SR 79 Section A12 paved in 2005 & 2006*
- SR 60 Section B27 paved in 2006
- SR 51 Section B31 paved in 2006
- SR 79 Section 35M paved in 2007 & 2008*
- SR 28 Section A55 paved in 2018

*Won the Sheldon G Hayes Award

Other projects:

- SR 4035 Section B01 paved in 2009
- SR 910 Section A20 paved in 2010
- Martin Luther King Busway from downtown
 Pittsburgh to Wilkinsburg paved in 2010
- SR 366 Section 20R paved in 2015

SR 910 Section A20 – Harmar Township

*Picture taken in 2019

What do all these project have in Common?

Picture of SR 79 Sec. 35M taken in 2019, – 11 years old!!

-NO substructure failures since the original crack and seat operation was performed!

- Reduction of overall project time and cost
- Enhanced Safety: no open excavation for traveling public and project personnel
- No joint reflection in surface course
- Eliminates saw and seal in overlying pavement with eliminates exposure to silica

Benefits of C&S (cont'd)

- Virtually Eliminates Undercuts
- Easier to Maintain
- Crack and Seat with SMA surface will increase the Life Cycle expectancy of the pavement in excess of 15 years!
- Reduce the need for crossovers
- A positive perception by traveling public

Reduction of Overall Project Time and Cost

SR 79 Section A12 – Kirwan Heights

Reduction of Overall Project Time and Cost

SR 79 Section A12 – Kirwan Heights

- Originally designed as a full depth reconstruction
- Would have had to expose the questionable sub-grade
 - Decreased the need for undercuts
 - Tremendous time savings for the project

Reduction of Overall Project Time and Cost

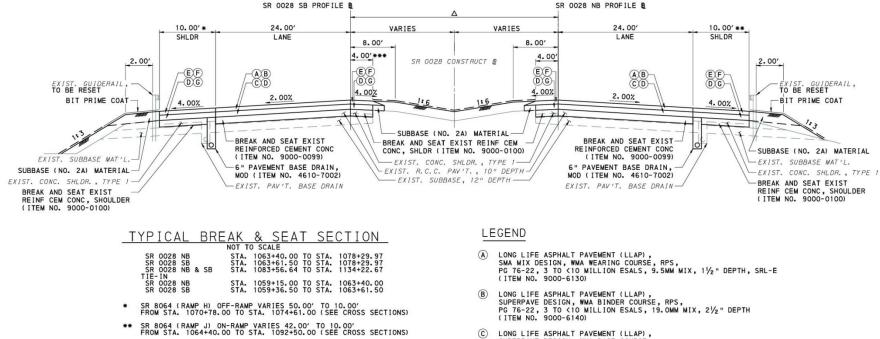
SR 28 Section A55 – Tarentum

- Originally bid as weekend closures with full detours
 - Higher than average precipitation that year
 - Decreased the need for undercuts
 - Tremendous time savings for the project
 - A positive perception by traveling public

C&S Process

- Sawcut at one third points to a depth sufficient to sever mesh reinforcing steel.
 Provide sawcuts such that the spacing of existing joints and/or sawcuts is approx. 20 feet.
- Typically a Guillotine Breaker is Utilized in the Fracturing Effort as per Test Section Results

 Typical breaking pattern of 18" to 24" apart
- Seat the Cracked Pavement Using a 50 Ton Pneumatic Roller

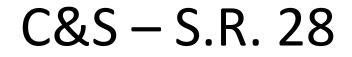


C&S Process (cont'd)

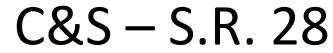
- Establish Overlay Thickness using Acceptable Design Methodology
- Overlay Cracked and Seated Pavement as Per Typ. Sections

SR 28 Typical Section

- *** SR 0028 SB SHLDR RT VARIES 7.00' TO 4.00' FROM STA. 1059+36.50 TO STA. 1060+00.00
- △ 37.00' VARIES 37.00' TO 60.50' STA. 1056+00.00 TO STA. 1119+00.00 60.50' STA. 1134+00.00 TO STA. 1134+00.00 STA. 1134+00.00 TO STA. 11316+00.00

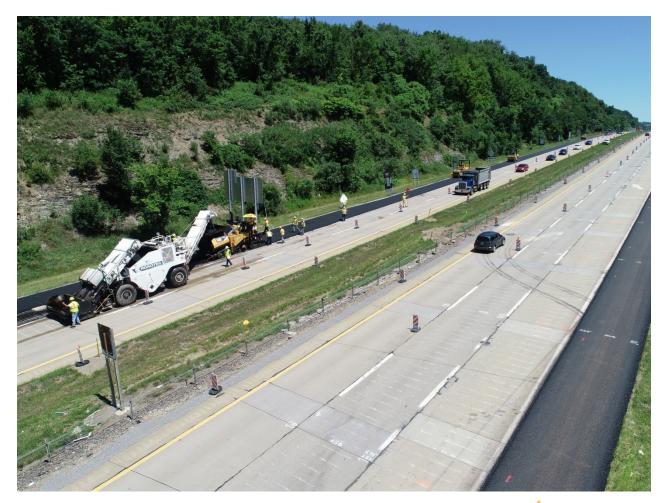

- (C) LONG LIFE ASPHALT PAVEMENT (LLAP), SUPERPAVE DESIGN, WMA BASE COURSE, PG 64-22, 3 TO <10 MILLION ESALS, 25. OMM MIX (ITEM NO. 9000-6150, MIN. DEPTH 3¹/₂")
- (D) SUPERPAVE ASPHALT MIXTURE DESIGN, WMA WEARING COURSE (SCRATCH), PG 64-22, 3 TO <10 MILLION ESALS, 9.5MM MIX, SRL-L
- (E) SUPERPAVE ASPHALT MIXTURE DESIGN, WMA WEARING COURSE, PG 64-22, 3 TO <10 MILLION ESALS, 9.5MM MIX, $1^{\prime}\!/_2$ " DEPTH, SRL-L
- (F) SUPERPAVE ASPHALT MIXTURE DESIGN, WMA BINDER COURSE, RPS, PG 76-22, 3 TO <10 MILLION ESALS, 19.0MM MIX, $2^{1}\!/_{2}$ " DEPTH
- 6 SUPERPAVE ASPHALT MIXTURE DESIGN, WMA BASE COURSE, PG 64-22, 3 TO <10 MILLION ESALS, 25.0MM MIX, 3 $\rlap{1}{2}{}^{\prime\prime}$ DEPTH
- (H) SUBBASE 8" DEPTH (NO. 2A)
- (R) PAVED SHOULDERS, TYPE 1-SP

C&S – S.R. 28




C&S – S.R. 28

50 ton cart pulled by a tractor or dozer



Thank You!

