Polymer- Modified Bridge Deck Waterproof Surface Mix

Pennsylvania Asphalt Pavement Association 60th Annual Paving Conference Hershey, PA January 22, 2020

Ron Corun Specialty Products Manager Associated Asphalt

- Mix designed to provide rut resistance
- Mix designed to provide extreme fatigue resistance – may experience much greater vertical movement than on a roadway
- Mix designed to achieve density without vibratory compaction
- Mix designed to have extremely low permeability "water proof"
- Mix designed to have excellent workability

- Challenge in the past to maintain rut resistance and extreme flexibility at the same time
- Industry has used Styrene-Butadiene-Styrene (SBS) polymers to modify asphalt for over 25 years
 - Styrene is a hard plastic material provides stiffness
 - Butadiene is man-made rubber provides flexibility

- In the past, SBS dosage levels above 4% have created asphalt binders with poor workability
- New formulations of SBS polymer now allow dosages >7% with excellent workability
- Now possible to provide high levels of rut and fatigue resistance at the same time with high levels of SBS polymer modification
- Associated Asphalt formulated a highly modified asphalt to meet NJDOT specification for bridge deck applications – StellarFlex BD

- NJDOT and Rutgers University developed a Bridge Deck Waterproof Surface Course (BDWSC) mix to utilize highly polymer-modified asphalt
 - 3/8" mix designed at 1% air voids to provide impermeable mix
 - Mixture rut test specification
 - Mixture fatigue cracking test specification
 - No specification for PG grade of asphalt binder requires polymer modified binder that allows mix to pass rutting and fatigue test requirements

Bridge Deck Water Proof Wearing Surface Course - Specifications

Table 555.02.01-1 Job Mix Formula Requirements for BDWSC	
Sieve Size	Percent Passing by Mass
1/2"	100
3/8"	80-90
#4	55-85
#8	32-42
#16	20-30
#30	12-22
#50	7-16
#100	3-12
#200	2,0-6,0
Minimum Percent Asphalt	7.0
Binder by Mass of Total Mix	

BDWSC Rut Testing

Asphalt Pavement Analyzer AASHTO TP 63

- 100 lb. wheel load; 100 psi hose pressure
- Tested at 64°C for 8,000 loading cycles
- Measures rut depth
- NJDOT BDWSC specification rutting ≤ 3 mm

BDWSC Rut Testing

BDWSC Fatigue Test

- Flexural Beam Fatigue Device, AASHTO T-321
 - Tests mix's ability to withstand repeated bending which causes fatigue failure
 - Data = number of loading cycles to failure (loss of stiffness)

BDWSC Fatigue Test

- Beam Fatigue Test typically run at 900 µ-strain and 10 Hz (high deflection, slow moving vehicle)
- For additional vertical movement in bridge decks, test for BDWSC is run at 1500 µ-strain
- NJDOT requires > 100,000
 cycles to failure

BDWSC Beam Fatigue

Beam Fatigue, Cycles to Failure

BDWSC Permeability Test

Falling Head Permeability Test

- Most commonly used for asphalt
- Can test 4 or 6" diameter cores
- Rubber membrane forced on side of samples (15 psi) to prevent side leakage

BDWSC Permeability Testing

 BDWSC mixture was found to be "impermeable" – could not get water to flow through sample

Samples cored from 6-inch diameter gyratory sample

BDWSC Projects – NJ Route 87

- NJ Route 87 Absecon Inlet Bridge
- Paved in 2008 with BDWSC mix
- 2008 National Asphalt Pavement Association (NAPA) "Quality in Construction" award winner

BDWSC Projects – George Washington Bridge (GWB)

- GWB presents extreme challenge to asphalt mix
- Orthotropic steel deck substantial vertical movement
- Most heavily trafficked bridge in the world – 108 million vehicles per year
- BDWSC mix performing well after seven years

Chesapeake Bay Bridge Tunnel

PAPA member Allan Myers is currently repaving the 18 mile long Chesapeake Bay Bridge Tunnel with StellarFlex[®] Bridge Deck Binder

BDWSC Summary

- BDWSC binder and mix is very attractive product for bridge deck paving
 - Excellent workability
 - Liquid asphalt delivered to contractor ready-to-use
 - No additives at asphalt plant
 - Liquid asphalt is delivered and certified to meet requirements prior to use
 - Excellent rut resistance
 - Superior fatigue resistance
 - Excellent compactibility
 - Environmentally friendly
 - Economical

Questions?

StellarFlex FR[®] Binder For High Friction Chip Seals

Pennsylvania Asphalt Pavement Association 60th Annual Paving Conference Hershey, PA January 22, 2020

Ronald Corun Specialty Products Manager Associated Asphalt Partners, LLC

High Friction Surface Treatment (HFST)

- FHWA has been promoting HFST for safety
- HFST consists of epoxy binder and bauxite aggregate
- NJDOT placed sections of HFST in 2018 and experienced severe delamination of epoxy binder

*From designs with different resin binders

NJDOT hired Rutgers University to investigate

- Major cause epoxy expands and contracts at a much higher rate than asphalt pavement
- Causes tearing and cracking resulting in delamination
- Aged pavements are less able to withstand stresses

Crack @ HFST Terminus Due to Thermal Contraction

Delamination caused by thermal contraction stresses

- Rutgers proposed to replace the epoxy with PG 88-22FR asphalt binder used by FAA (actually grades as a PG 94-22)
- NJDOT placed sections of High Friction Chip Seal (HFCS) using FR binder with bauxite aggregate and local trap rock aggregate in 2018
- Excellent performance after one year

Bond Strength (psi)

Source – Rutgers University Study

Chip seal installation contractor raves about FR binder as chip adhesive

- Sprays easily
- Excellent chip retention
- No broken windshields
- No bleeding

NJ Route 68 - One year old HFCS With FR Binder

 NJDOT measured initial skid number of SN = 70

HFCS Cost Compared to HFST

Cost per Square Yard, \$

PG 88-22FR Binder provides excellent performance at a lower cost

Cost data courtesy
 NJDOT

Summary

- HFCS using PG 88-22FR asphalt binder eliminates HFST epoxy coefficient of expansion incompatibility – which is major cause of delamination
- HFCS application becomes a standard chip seal installation
- Comparable bond strength to epoxy
- Excellent performance to date
- Substantial cost savings

Questions?