PA Initiative on Asphalt Mix Performance Tests

Pennsylvania Asphalt Pavement Association

Regional Technical Meeting

March 17, 18, 19, 2020

Gary Hoffman, PAPA
and
Mansour Solaimanian, Penn State
DISCUSSION TOPICS

<table>
<thead>
<tr>
<th></th>
<th>Performance Based Testing & Long-Life Asphalt Pavements</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>PA Initiative on Performance Testing</td>
</tr>
<tr>
<td>3</td>
<td>Candidate Performance Tests</td>
</tr>
<tr>
<td>4</td>
<td>Results, Summary, Conclusions</td>
</tr>
</tbody>
</table>
DISCUSSION TOPICS

1. Performance Based Testing & Long-Life Asphalt Pavements
2. PA Initiative on Performance Testing
3. Candidate Performance Tests
4. Results, Summary, Conclusions
LLAP Best Practices

- SMA Wearing
- WMA/Antistrip
- MTV Required
- Longitudinal Joint Density Specification
- **RIDE SPECIFICATION OPTIONAL**
- Tack Coat Every Layer (New Section 460)
- % **WITHIN TOLERANCE (PWT) ACCEPTANCE**
- **INCENTIVIZE CRITICAL ELEMENTS (i.e. MAT DENSITY)**
- **PERFORMANCE TESTS/BALANCED MIX DESIGN**
Examples of Performance Tests

- DCT
- IDEAL-CT
- crack
- Wheel Tracking
- rut
- SCB
Performance Test & LLAP

driven by:

- TQI
- STIC
Balanced Asphalt Mix Design

[Diagram showing a graph with axes labeled 'Asphalt Content' on the horizontal axis and 'Cracking Resistance' on the vertical axis. The graph includes a blue line representing cracking resistance and a red line representing rutting resistance. The area between the two lines is labeled 'Acceptable AC Range,' indicating the desired range for the asphalt mixture.]
HWT testing Pilot

Hamburg Wheel-Tracking Device
HWT Testing Advantages

• Well accepted nationally for rut testing

• Rutting Resistance Measure
 • Very well established track record detecting rut-prone asphalt mixtures.
 • Rules of thumb
 • 12.5mm at 20,000 cycles for polymer modified mixes
 • 12.5mm at 10,000 cycles for non-polymer modified mixes

• Moisture Susceptible Aggregate Measure
 • Can replace AASHTO T283 (TSR) eventually
HWT Standard Special Provision Status

- Standard Special previously circulated through APQIC Pro-team.
- CT 1 and CT 2 circulated
- Shooting for end of March for solicitation letter to Districts.
- Asking Districts to include the special provision on a minimum of 3 projects in the 2020 construction season with anticipated final inspection dates before October 31, 2021.
- Payment is a PDA. (about $700 per test)
HWT Standard Special Provision 2020

• HWT Testing results are for **information only** in 2020.

• HWT test results are not required until the **final project inspection**.

• No project construction delays because of testing availability or results in 2020.

• Payment to contractor for HWT testing in 2020.

• Incremental changes in future years.
 • Incidental to JMF, Testing requirement for JMF approval, Limits established…
<table>
<thead>
<tr>
<th>DISCUSSION TOPICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Performance Based Testing & Long-Life Asphalt Pavements</td>
</tr>
<tr>
<td>2 PA Initiative on Performance Testing</td>
</tr>
<tr>
<td>3 Candidate Performance Tests</td>
</tr>
<tr>
<td>4 Results, Summary, Conclusions</td>
</tr>
</tbody>
</table>
Performance Testing

- General agreement on the rutting test (HWT) and test protocols.

- The “school is still out” on the best cracking test and test protocols.
Industry SCB/IDEAL CRACK Testing: How Did It Start?

- Move to Crack Performance Testing
- Initiated by Asphalt Quality Improvement Committee and PAPA
- Industry Interested in Accelerating Move to Performance Testing
Purpose of the Effort

- Bridge the Gap to Crack Performance Testing
- Investigate Performance of PA Mixes in SCB/IDEAL crack performance tests
- Develop A Database of SCB/IDEAL Test Results
- Evaluate Sensitivity of the PA Mixes to the Tests
- Evaluate Correlation with Field Performance
SCB
Mix Criteria and Variables

- Air Void: 5.5% (Final SCB Specimen)
- Design Binder Content (and +0.5%)
- Mixes with 15% RAP at Design BC and at 0.5% Higher Binder Content
- Mixes at higher RAP Contents
- NMAS: 4.75, 9.5mm, 12.5mm, 19mm, 25mm
- Lab vs Plant Produced
- Short term vs Long Term Aging
Data Range: Flexibility Index (higher is better)

Average = 8.1

Average = 4.6
General Observations

1. Higher AC Content \rightarrow higher F.I.
2. Higher RAP content lower F.I.
3. Longer aging \rightarrow lower F.I.
4. Plant mix has higher F.I. than lab mix
5. Higher voids \rightarrow higher F.I.
6. SMA mix delivers higher F.I.
7. Finer mix with high BC \rightarrow higher F.I.
DISCUSSION TOPICS

1. Performance Based Testing & Long-Life Asphalt Pavements
2. PA Initiative on Performance Testing
3. Candidate Performance Tests
4. Results, Summary, Conclusions
Performance Tests Under Consideration

- Hamburg Wheel Tracking
- IDEAL-CT Test
Hamburg Wheel Tracking (AASHTO T 324)

Moisture Conditioning with Hydrostatic Pore Pressure (ASMT D7870) + 20 Hr. Conditioning for Adhesion

MiST (Moisture Induced Stress Tester)
Traffic Effect on Moisture Damage

Pore Pressure Build-Up
Due to External Cyclic Stress

Compression/Tension Cycle
(Cyclic Pressure/Suction)
Wheel Tracking Test Data

Zone of Primary Creep

Zone of Secondary Creep

Wheel Passes

Tertiary Creep

Stripping Inflection Point
Binder Stiffness Effect

Number of Wheel Passes

Rut Depth, mm

Source: Dolomite/Limestone
Binder Stiffness Effect

HWT - Submerged

PG 64-22 PG 58-28

SP 12.5mm – Limestone Aggregate (Aggregate 1)
Binder Stiffness Effect

HWT - Submerged

PG 64-22 PG 58-22

SP 9.5mm – Limestone/Dolomite Aggregate
(Aggregate 2)
Mix/Aggregate Effect

Number of Wheel Passes

Rut Depth, mm

Mix 1
Mix 2

PG 58-22
Mix/Aggregate Effect

Number of Wheel Passes

Rut Depth, mm

Mix 1
Mix 2

PG 64-22
Rejuvenator Effect – 35% RAP Mix

Number of Wheel Passes

Rut, mm

-0% Rejuvenator
-2% Rejuvenator
-5% Rejuvenator
-8% Rejuvenator

0 4,000 8,000 12,000 16,000 20,000
Looking at Wheel Tracking Results for

- Submerged
- MiST Conditioned
- Dry
Aggregates Used in the Study

Limestone, Dolomite, and Siliceous Gravel

Dolostone shown here
HWTD - Submerged

PARAMETERS from WHT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP (# of passes)</td>
<td>11,262</td>
</tr>
<tr>
<td>Ratio of the slope (strip/creep)</td>
<td>4.99</td>
</tr>
<tr>
<td>Max Rut (mm)</td>
<td>-24.10</td>
</tr>
<tr>
<td>No. of Passes to 10 mm rut depth</td>
<td>14,294</td>
</tr>
<tr>
<td>Rut depth at 10,000 passes, mm</td>
<td>-5.36</td>
</tr>
<tr>
<td>Stripping Slope (mm/1000 passes)</td>
<td>1.52</td>
</tr>
</tbody>
</table>
HWTD – after MiST

PARAMETERS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP (# of passes)</td>
<td>10,740</td>
</tr>
<tr>
<td>Ratio of the slope (strip/creep)</td>
<td>1.38</td>
</tr>
<tr>
<td>Max Rut (mm) at 22,000 passes</td>
<td>-8.91</td>
</tr>
<tr>
<td>No. of Passes to 10 mm rut depth</td>
<td>25,296</td>
</tr>
<tr>
<td>Rut depth at 10,000 passes, mm</td>
<td>-5.4</td>
</tr>
<tr>
<td>Stripping Slope (mm/1000 passes)</td>
<td>0.30</td>
</tr>
</tbody>
</table>
HWTD - Dry

PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIP (# of passes)</td>
<td>>22,000</td>
</tr>
<tr>
<td>Ratio of the slope (strip/creep)</td>
<td>0.92</td>
</tr>
<tr>
<td>Max Rut (mm) at 22,000 passes</td>
<td>-6.44</td>
</tr>
<tr>
<td>No. of Passes to 10 mm rut depth</td>
<td>51,470</td>
</tr>
<tr>
<td>Rut depth at 10,000 passes, mm</td>
<td>-5.17</td>
</tr>
<tr>
<td>Stripping Slope (mm/1000 passes)</td>
<td>0.12</td>
</tr>
</tbody>
</table>
PG 58-28
Wet

PG 58-28
Dry
Dry vs. MiST vs. Submerged

Mix 1 - Left Track
Performance Tests Under Consideration

- Hamburg Wheel Tracking
- IDEAL-CT Test
Traffic Based Criteria (HWT) - Example

<table>
<thead>
<tr>
<th>Traffic Level, (Million ESALs)</th>
<th>Max. Rut Depth at 20,000 passes (mm)</th>
<th>SIP (Min.)</th>
<th>Strip/Creep Ratio (Max.)</th>
<th>Passes to 10mm Rut (Min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16,000</td>
<td>2.0</td>
<td>15,000</td>
</tr>
<tr>
<td>≥ 3 and <10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14,000</td>
<td>2.0</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>16,000</td>
<td>3.0</td>
<td>14,000</td>
</tr>
<tr>
<td><3</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>14,000</td>
<td>3.0</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>16,000</td>
<td>4.0</td>
<td>12,000</td>
</tr>
</tbody>
</table>
IDEAL Cracking Test for Asphalt Concrete

Indirect Tensile Asphalt Cracking Test

IDEAL-CT

Proposed by Research at Texas Transportation Institute (TTI)
Indirect Tensile Strength Test
(for AASHTO T 283, Tensile Strength Ratio (TSR))

\[S_t = \frac{2P}{\pi tD} \]
Indirect Tensile Test at Low Temp.

IDT Test, -20°C, 12.5 mm/min

Stress, psi

Strain, %
Fracture Work = Area under the curve

Fracture Energy $G_f = \frac{\text{Fracture Work}}{\text{Area}}$

$G_f = \frac{\text{Fracture Work}}{tD}$

$t = \text{specimen thickness}$

$D = \text{specimen diameter}$
IDEAL – Test Results

Criteria established based on CT_{Index}

$$CT_{Index} = \frac{G_f}{P} \times \left(\frac{l_{75}}{D} \right)$$

$$\frac{P}{l} = |m_{75}| = \frac{P_{85} - P_{65}}{l_{85} - l_{65}}$$
Source of Mixes & Conditioning

Sources 1 and 2

Lab Prepared Mix → Long Term Aged (5 days @ 185°F) → LTOA

Source 3

Plant Prepared Mix → Short Term Aged → STOA
Types of Mixes Tested (25 Mixes)

<table>
<thead>
<tr>
<th>Source</th>
<th># of Mixes</th>
<th># of Plugs</th>
<th>Mix Origin</th>
<th>Mix Condition</th>
<th>NMAS, mm</th>
<th>Binder Grade</th>
<th>Binder Content</th>
<th>RAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>9</td>
<td>27</td>
<td>Lab Prod.</td>
<td>LTOA</td>
<td>9.5</td>
<td>58-28</td>
<td>5.2 to 6.2</td>
<td>0, 15, 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>9</td>
<td>27</td>
<td>Lab Prod.</td>
<td>LTOA</td>
<td>9.5</td>
<td>58-28</td>
<td>5.1 to 6.1</td>
<td>0, 15, 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>7</td>
<td>35</td>
<td>Plant Prod.</td>
<td>STOA</td>
<td>6.3</td>
<td>64-22</td>
<td>6.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76-22</td>
<td>6.9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.5 (3)</td>
<td>64-22</td>
<td>5.9 & 6.0</td>
<td>15.0, 20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19 (2)</td>
<td>64-22</td>
<td>4.8 & 5.1</td>
<td>25.0, 28.5</td>
</tr>
</tbody>
</table>

Types of Mixes Tested (25 Mixes)
Air Void Comparison

Reported Air Void, %

NECEPT Air Void, %
Breaking Specimens

Test Temperature: 25°C
Displacement Rate: 50 mm/min
Test Repeatability

Source 1

Specimens C4, C5, C6

NMAS: 9.5 mm, PG 64-22
Design Binder Content: 5.7%
Virgin Binder Content: 4.2
Average Air Void: 5.3%
RAP: 25%
Long term aged: 120 hrs at 85°C

Average IDEAL CT: 35.8
COV: 4.4%

Displacement Rate: 50 mm/min
Test Temperature: 25°C

COV on Fracture Energy: 4.4%
Test Repeatability

Specimens T1, T2, T3

Source 2

NMAS: 9.5 mm, PG 64-22
Design Binder Content: 5.6%
Virgin Binder Content: 5.6%
Average Air Void: 5.4%
RAP: 0%
Long term aged: 120 hrs at 85°C

Average IDEAL CT: 125.4
COV: 10.9%

Displacement Rate: 50 mm/min
Test Temperature: 25°C

COV on Fracture Energy: 1.0%
Specimens T16, T17, T18

Source 2

NMAS: 9.5 mm, PG 64-22
Design - 0.5% Binder Content: 5.1%
Virgin Binder Content: 5.1%
Average Air Void: 5.4%
RAP: 0%
Long term aged: 120 hrs at 85°C

Average IDEAL CT: 68
COV: 12.8%

Displacement Rate: 50 mm/min
Test Temperature: 25°C

COV on Fracture Energy: 1.0%
Displacement Rate: 50 mm/min
Test Temperature: 25°C
Specimens 6, 7, 8, 9, 10

Source 3

NMAS: 9.5 mm
Total Binder Content: 5.9%
Virgin Binder Content: 4.9%
PG 64-22
Average Air Void: 5.7%
RAP: 20%
Plant Produced Mix
Short Term Aged

Average IDEAL CT: 121
COV: 21.6%

COV on Fracture Energy: 4.4%
Test Repeatability

Source 3

Displacement Rate: 50 mm/min
Test Temperature: 25°C
Specimens 31, 32, 33, 34, 35

NMAS: 6.3 mm
Total Binder Content: 6.9%
Virgin Binder Content: 6.9%
PG 76-22
Average Air Void: 5.3%
RAP: 0%
Plant Produced Mix
Short Term Aged

Average IDEAL CT: 233
COV: 18.3%

COV on Fracture Energy: 2.8%
Test Repeatability

NMAS: 9.5 mm, PG 76-22
RAP: 15%

Average IDEAL CT: 38.9
COV: 44.4%

NOTE: COV too high
Test Repeatability

NMAS: 9.5 mm, PG 76-22
RAP: 0%

Average IDEAL CT: 44.4
COV: 37.9%

If only 2 specimens, COV=13%
Test Repeatability

NMAS: 9.5 mm
PG 64-22
RAP: 15%

Average IDEAL CT: 192
COV: 74.1%

NOTE: COV very high, results not acceptable
Test Repeatability

NMAS: 9.5 mm
PG 64-22
RAP: 15%

Average IDEAL CT: 210
COV: 43.5%

NOTE: COV too high
Test Repeatability

NMAS: 9.5 mm,
PG 64-22
RAP: 15%

Average IDEAL CT: 32.9
COV: 45.0% (2 specimens)
What COV should we use?

<table>
<thead>
<tr>
<th>Criterion on COV</th>
<th>Number of Mixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\geq 30%$</td>
<td>5</td>
</tr>
<tr>
<td>$\geq 25%$</td>
<td>6</td>
</tr>
<tr>
<td>$\geq 20%$</td>
<td>7</td>
</tr>
<tr>
<td>$\geq 15%$</td>
<td>15</td>
</tr>
<tr>
<td>$\geq 10%$</td>
<td>20</td>
</tr>
</tbody>
</table>

COV: Coefficient of Variation

Total Number of Mixes: 23
Effect of Binder Content
(Source 1)

<table>
<thead>
<tr>
<th>Binder Content, %</th>
<th>CT, index</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td></td>
</tr>
</tbody>
</table>

PG 64-22
No RAP
NMAS 9.5 mm
Effect of Binder Content
(Source 2)

Binder Content, %

CT$_\text{index}$

<table>
<thead>
<tr>
<th>Binder Content, %</th>
<th>CT$_\text{index}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>0</td>
</tr>
<tr>
<td>5.6</td>
<td>120</td>
</tr>
<tr>
<td>6.1</td>
<td>320</td>
</tr>
</tbody>
</table>

PG 64-22
No RAP
NMAS 9.5 mm
Effect of RAP Content
(Source 1)

<table>
<thead>
<tr>
<th>RAP Content, %</th>
<th>NMAS 9.5 mm</th>
<th>PG 64-22</th>
<th>PG 76-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>LTOA</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Binder:
- NMAS 9.5 mm: 5.7%
- PG 64-22: 6.2%
- PG 76-22: 5.7%

CT index
Effect of RAP Content
(Source 2)

NMAS 9.5 mm Total Binder=6.1%
PG 64-22

Total Binder=5.6%
PG 64-22

Total Binder=5.6%
PG 76-22

CT

RAP Content, %
Specimens T13, T14, T15

NMAS: 9.5 mm, PG 64-22
Design + 0.5% Binder Content: 6.1%
Average Air Void: 5.5%
RAP: 25%
Long term aged: 120 hrs at 85°C

Average IDEAL CT: 466
COV: 15.8%

Displacement Rate: 50 mm/min
Test Temperature: 25°C
Effect of RAP Content
(Source 3)

% shown is binder content.

CT_index

NMAS=19 mm
PG 64-22
5.1%

NMAS=9.5 mm
PG 64-22
6.0%

NMAS=6.3 mm
PG 76-22
6.9%

NMAS=6.3 mm
PG 64-22
6.3%

RAP Content, %
Effect of Binder Grade & RAP (Source 1)

NMAS 9.5 mm
Binder Content: 5.7%

Binder Grade

58-22 | 64-22 | 64-22 | 64-22

CT Index

25% RAP

15% RAP

25% RAP
Effect of Binder Grade & RAP
(Source 2)

Binder Grade

25% RAP

No RAP

15% RAP

25% RAP

NMAS 9.5 mm
Binder Content: 5.6%
DISCUSSION TOPICS

1. Performance Based Testing & Long-Life Asphalt Pavements
2. PA Initiative on Performance Testing
3. Candidate Performance Tests
4. Results, Summary, Conclusions
Summary & Recommendations (HWTD)

- HWTD effectively captures binder effect.

- HWTD effectively captures mix differences.

- Initial impact of water is **reduction** of rutting (improvement of performance).
Summary & Recommendations (HWTD)

- Damaging effect of water is manifested through increase of cycles and loading.

- Performance of mix under load significantly better than performance under water/load combination (Dry vs Wet)

- Best to establish HWTD criteria in connection with the traffic level (ESALs)
Summary & Conclusions (IDEAL-CT)

- Trend of Data very similar to SCB

- IDEAL-CT Range: 33 to 460

- In most cases, the test is very repeatable

- COV mostly under 25%
Summary & Conclusions (IDEAL-CT)

- Increasing binder increases flexibility

- Increasing RAP over 20% decreases flexibility

- Use of soft binder with high RAP: mixed results (RAP binder stiffness effect?)
Recommendations
(IDEAL-CT)

- Use four replicates

- Need a limit on COV
 - Round robin testing needed
 - Recommendation on COV: 25%
Long Life Asphalt Projects – DCT data

Mansour’s NOTE: This slide seems out of place. I suggest you remove or place somewhere else.
The Brazilian Test
(The Split Test or Indirect Tensile Test)

- Tensile Strength of Concrete (Carneiro, 1943)
- Tensile Strength of Stabilized Materials (Hudson, Kennedy, 1967)
- Tensile Strength of Asphalt (Kennedy et al., 1969)
- Tensile Strength of Rocks (ISRM, 1978)