57th Annual PAPA Conference Hershey, Pennsylvania

NCAT Asphalt Research Update

Dr. Randy West, P.E.

Director / Research Professor

NCAT's mission is to provide innovative, relevant and implementable research, technology development and education that advances safe, durable and sustainable asphalt pavements.

Outline

- Pavement Economics Committee projects
 - Limiting strain in pavement design
 - Educational program
 - Thinlays
 - IRI related to performance
- Update on the NCAT Test Track
 - MnROAD partnership
 - performance testing for mix design and QC
 - pavement preservation

Pavement Economics Committee Projects

- Optimized Pavement Design
- Determining Service Lives Based on IRI
- Thinlay Pavement Preservation Guide
- Educational Program
- Best Practices for Determining the Life Cycle Costs of Asphalt Pavements
- Life Cycle Benefits of Premium Mixes

Pavement Engineering

SURFACE COURSE BINDER COURSE ASHALT BASE COURSE ROAD BASE COURSE SUB-BASE SUB-BASE

Concept of Perpetual Pavement

Perpetual Pavement Design

- For controlling bottom-up fatigue cracking
 - Calculated strain should be lower than the 60th percentile horizontal strain distribution
 - For controlling structural rutting
 - Vertical strains at the 50th percentile should be lower than 200 microstrain

Criteria validated with data from the NCAT Test Track and Perpetual Pavement Award sections

Validation of <u>Horizontal</u> Strain Distribution Criteria

at AUBURN UNIVERSITY

Validation of Vertical Strain Criteria

Pavement	Strain at 50 th Percentile			
Iowa	76 microstrain			
Montana	146 microstrain			
Oklahoma	128 microstrain			
Oklahoma 2	153 microstrain			
Virginia	169 microstrain			
Kentucky	188 microstrain			
Mississippi	164 microstrain			
Tennessee	162 microstrain			

Vertical strains at the 50th percentile for perpetual pavements are lower than 200 microstrain

Implementation of Limiting Strain Criteria

by Dr. David Timm, Auburn Professor of Civil Engineering

 PerRoad is being updated to include these limiting strain criteria

Implementation of Limiting Strain Criteria

THINLAY

SAFE. SMOOTH. DURABLE.

Why Thin Asphalt Overlays?

- Shift to preservation and renewal
- Safety and smoothness are needed more than added structure
 - Material improvements such as PMA, better aggregate specs, and mix type options.

- Long life and low life-cycle
 Structural -Maintain g
- Safety / User satisfaction —Minimize traffic delays
 - -Smooth surface
 - -Restore skid resistance
 - –No loose stones & minimizes dust
 - -Lower noise

- Maintain grade & slopeWithstands heavy trafficEasy to maintain
- Sustainable
 - -Recycled materials
 - –Seals surface & no binder run-off

- Long life and low life-cycle Structural cost! –Maintain g
- Safety / User satisfaction
 - -Minimize traffic delays
 - -Smooth surface
 - -Restore skid resistance
 - –No loose stones & minimizes dust
 - -Lower noise

- Maintain grade & slopeWithstands heavy trafficEasy to maintain
- Sustainable
 –Recycled materials
 - –Seals surface & no binder run-off

- Long life and low life-cycle
 Structural cost!
 Maintain g
- Safety / User satisfaction

 Minimize traffic delays
 - -Smooth surface
 - -Restore skid resistance
 - –No loose stones & minimizes dust
 - -Lower noise

- Maintain grade & slopeWithstands heavy trafficEasy to maintain
- Sustainable
 –Recycled materials
 - -Seals surface & no binder run-off

- Long life and low life-cycle Structural cost! –Maintain g
- Safety / User satisfaction —Minimize traffic delays
 - -Smooth surface
 - -Restore skid resistance
 - –No loose stones & minimizes dust
 - -Lower noise

- Maintain grade & slopeWithstands heavy trafficEasy to maintain
- Sustainable
 - Recycled materialsSeals surface & no binder run-off

Thin Overlay Guides

NCHRP SYNTHESIS 464

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Thin Asphalt Concrete Overlays

A Synthesis of Highway Practice

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES NCHRP Synthesis 464 • Thinlays for Pavement **Preservation** – pending publication from NAPA • Future FHWA Tech Brief: The Use of Thin Asphalt **Concrete Overlays for Pavement Preservation**

International Roughness Index (IRI)

- The only universal measure of pavement performance
 - All states required to report IRI in HPMS
 - The only common measure among all pavement types: asphalt, concrete, composite, other

International Roughness Index Categories

IRI Categories	Interstate Routes	NHS Non- Interstate Routes	Non-NHS Routes with ADT ≥ 2000	Non-NHS Routes with ADT < 2000	
<u>≤</u> 70	Excellent	Excellent			
71-75	Good	Excellent	Excellent	Excellent	
76-100	0000	Cood			
101-120	Foir	0000	Good		
121-150	i ali	Fair	0000	Good	
151-170		1 CHI	Foir		
171-195	Poor		Fair	Fair	
196-220	POUR	Poor	Poor		
> 220			POOR	Poor	

NCAT Report 15-02

LITERATURE REVIEW: THE IMPACT OF PAVEMENT ROUGHNESS ON VEHICLE OPERATING COSTS

NCAT Report 16-03

A SYNTHESIS REPORT: VALUE OF PAVEMENT SMOOTHNESS AND RIDE QUALITY TO ROADWAY USERS AND THE IMPACT OF PAVEMENT ROUGHNESS ON VEHICLE OPERATING COSTS

NCAT Draft Report

REVIEW OF INITIAL SERVICE LIFE DETERMINATION IN LCCA PROCEDURES AND IN PRACTICE

NCAT Report 16-03

- 1. INTRODUCTION
 - 1.1 Background
- 2. RIDE QUALITY AND PAVEMENT ROUGHNESS
 - 2.1 Importance of Ride Quality to Traveling Public
 - 2.2 Factors Related to Perceived Ride Quality
- 3. IMPACT OF PAVEMENT ROUGHNESS ON VEHICLE OPERATING COSTS
 - 3.1 Fuel Consumption
 - 3.2 Tire Wear
 - 3.3 Maintenance and Repair
 - 3.4 Oil Consumption
 - 3.5 Depreciation
- 4. SUMMARY
- 5. REFERENCES

"not only do our customers want smooth roads for comfort, smooth roads cost less for both the owner/agency and the user" *Mark Swandlund, FHWA*

LCCA for Pavement Type Selection

LCCA Basics

Based on LTPP Data Pavement Age and Roughness at First Rehabilitation

Pavement Type	No.	Pavement Age at Rehabilitation (yrs)	Mean IRI prior to Rehabilitation (in/mi)
Asphalt	106	17.9	118.5
Concrete	44	24.0	146.5

Time to First Rehabilitation (Years) by Climatic Zone

	Asphalt Pavements					
Climatic Zone	No.	Avg.	Min.	Max.	Std. Dev.	COV
Dry, Freeze	24	15.0	7.1	26.3	5.1	34.0%
Dry, Non-freeze	23	19.7	7.8	27.0	4.6	23.5%
Wet, Freeze	50	20.0	8.8	28.2	5.5	27.3%
Wet, Non-freeze	109	16.8	7.8	28.9	5.3	31.8%
	Concrete Pavements					
Climatic Zone	No.	Avg	Min	Max	Std. Dev.	COV
Dry, Freeze	10	23.8	15.8	31.3	5.8	28.4%
Dry, Non-freeze	6	24.5	17.1	30.3	5.8	23.7%
Wet, Freeze	80	23.5	14.7	35.4	5.8	24.7%
Wet, Non-freeze	25	24.9	12.9	33.7	6.0	24.0%

IRI at First Rehabilitation by Climatic Zone

Climatic Zone	No.	Avg IRI (in/mi)	Min IRI (in/mi)	Max IRI (in/mi)	Std. Dev.	COV
	Asphalt Pavements					
Dry, Freeze	21	116	47	214	40	34%
Dry, Non-freeze	20	82	47	137	24	30%
Wet, Freeze	39	140	60	359	73	52%
Wet, Non-freeze	86	106	30	260	47	44%
	PCC Pavements					
Dry, Freeze	9	117	73	228	47	40%
Dry, Non-freeze	6	102	75	154	30	29%
Wet, Freeze	56	138	48	261	46	33%
Wet, Non-freeze	19	114	65	258	45	40%

Educational Program

- Life Cycle Cost Analysis for Pavement Type Selection
- Warm Mix Asphalt
- Open-Graded Friction Courses
- Using Recycled Materials
- Thin Overlays
- Perpetual Pavement Design

Pavement Test Track

Asphalt Pavement Proving Ground
46 Test Sections, 200 ft. each
Test sections are typically evaluated over a three year period
5 trucks each pulling 3 heavily loaded trailers make 400 laps/day

Types of Experiments

- 1. Structural expmts.
 - pavement design
 - Perpetual Pavement
 - MEPDG models
 - Empirical layer coef.
 contribution of nontraditional layers

 - highly modified mixes
 - OGFC
 - recycled bases
 - stabilized subbase

- 2. Surface expmts.
 - rutting
 - friction
 - permeability
 - noise
 - albedo
 - durability (raveling)
 - top-down cracking

Refining Aggregate Specifications

Eliminated the Restricted Zone
Identify polishing prone aggregates
Gravel works in SMA & OGFC
Relax F&E limit for SMA & OGFC

Findings Related to Mix Design

Fine and coarse Superpave mixes perform similarly
Modified binders reduce rutting approximately 50%
Dense-graded mixes perform as well as SMA for rutting resistance, but SMA is more durable
Lowering Ndesign does not lead to rutting

Coarse-C	Graded		Fine-Graded
Limestone-Slag	Gravel	Gravel	Limestone-Slag

Structural Analysis

- Revised asphalt layer coefficient for '93 AASHTO Pavement Design
- Mechanistic-Empirical Pavement Design
 - Measured vs. predicted stresses
 - Seasonal effects on asphalt pavement layers
 - Compressive stresses in unbound layers
 - Traffic wander
 - Dual tires vs super-single tire
 - Speed vs strain / load pulse
 - Field fatigue thresholds
 - Calibration of transfer functions

Oklahoma Perpetual Pavement on a weak subgrade

Product Evaluations

• WMA

• High polymer mixes

• Asphalt-rubber mixes

• Thiopave

Trinidad Lake Asphalt

• Fibers

Dual layer OGFC

Crack arresting mixes

High Friction Surface Treatments

Reclaimed Asphalt Pavement

• 🚳 💈

High RAP Test Sections

- Several experiments with 45 to 50% RAP
 Surface layers benefit of using lower PG
 All layers 50% RAP
 - lower critical strains
 - sections outperformed companion virgin sections
 - essentially a Perpetual Pavement at 7 inches thick

Cold Central Plant Recycling

RAP treated with foamed or emulsified asphalt An excellent option for areas with <u>excess</u> RAP Proven technology at NCAT Test Track and I-81 in Virginia for very high traffic

Structural contribution of CCPR materials is estimated to be about 70% of HMA

Cold Central Plant Recycling

Highly sustainable pavement technology Low capital equipment investment

MnROAD + NCAT Partnership

Working together on national need research projects
1. Validating cracking tests for balanced mix design
2. Documenting the life cycle benefits of Pavement Preservation Treatments

at AUBURN UNIVERSITY

With the current volumetric mix design system...

Balanced Mix Design

Cracking Resistance

Rutting Resistance

Scope

NCAT Test Track

Top-down cracking

MnROAD

Low-temperature cracking

Top-Down Cracking Sections

6 million ESALS, 1.5 years, No cracking yet

Load Related Asphalt Mixture Cracking Tests

SVECD

DCT

Energy Ratio

Nflex Factor

Cantabro

MnRQAD Test Section Layout

MnROAD + NCAT Partnership Pavement Preservation Experiments

Warm and cold climates
Low and high traffic sections
At least 25 preservation treatment sections on each roadway
High quality construction
Performance monitoring

Pavement Preservation

Preservation on Lee County Road 159

Thin Overlay x 8
Micro Surface x 6
Chip Seal x 7
Fog Seal x 1
Crack Seal x 1
Control Section x 2
25 Total Sections

Built in 2012

County road
Low ADT, high % trucks
Empty in, loaded out
In yr = 1 Track day
Out yr = 6 Track days
Diverse condition
Varies by WP and dir

Preservation on US 280

ISSA

Sponsor meeting at MnROAD

Contractor of

92nd AAPT Annual Meeting and Technical Sessions

The 2017 Annual Meeting will be held March 19-22, 2017 The Island Hotel, Newport Beach, California USA

- Leading Edge Workshop, *Practical Implementation of Asphalt Mixture Performance Tests*
- 1st Technical Session, *Pavement Preservation*
- 2nd Technical Session, Asphalt Mixture Testing
- AAPT/ISAP International Forum, *Hot Recycling: State of the Art and New Challenges*
- 3rd Technical Session, Asphalt Binder
- 4th Technical Session, Asphalt Mixture
- Symposium, Rubberized Asphalt Developments, Opportunities, and Challenges
- 5th Technical Session, *Recycling*
- 6th Technical Session, *Cracking*

For the latest information please check our web site at: <u>http://www.asphalttechnology.org</u>

Thank You

ALL HUMAN