Asphalt Mix Performance Testing for PA
An Update

2019 PAPA REGIONAL TECHNICAL MEETINGS
March 19, 20 and 21, 2019

Gary Hoffman, PAPA
and
Mansour Solaimanian, Penn State
DISCUSSION TOPICS

1. Performance Based Testing/SCB Initiative
2. A Summary of SCB Test Results
3. Long Life Asphalt Pavements (SMA)
4. RAP/RAS With Rejuvenators
5. IDEAL Test Initiative
DISCUSSION TOPICS

1 Performance Based Testing/SCB Initiative
BALANCED ASPHALT MIX DESIGN

GOAL: DESIGN/PLACE AN ASPHALT MIX THAT DOES NOT

- RUT
- CRACK
BALANCED ASPHALT MIX DESIGN

- Acceptable Rutting
- Acceptable Cracking
- Acceptable Cracking & Rutting

Diagram shows the relationship between asphalt content and Cracking Resistance, Rutting Resistance, and Acceptable AC Range.
Need Proper Performance Test for Balanced Mix Design

• Important Considerations:
 • Need Right Test
 • Appropriate Test Protocols
 • Right Acceptance Thresholds
Examples of Performance Tests

Wheel Tracking
Industry SCB Testing: How Did It Start?

• Move to Performance Testing

• Initiated by Asphalt Quality Improvement Committee and PAPA

• Industry Interested in Accelerating Move to Performance Testing
Purpose of the Effort

• Bridge the Gap to Performance Testing

• Investigate Performance of PA Mixes in SCB

• Develop A Database of SCB Test Results

• Evaluate Sensitivity of the PA Mixes to the Test

• Evaluate Correlation with Field Performance
SCB Test Setup

Applied Load

Support Support

Notch

Specimen Thickness: 50 mm
Notch Depth: 15 mm
Notch Width: 1.5 mm
Parameters Used For Evaluation

Fracture Energy

\[G_f = \frac{W_f}{B \cdot L} \]

B: Specimen Thickness
L: Ligament Length

Flexibility Index

\[FI = A \times \frac{G_f}{\text{abs}(m)} \]

A: Constant

Stiffness Index

Slope @ 50% Peak Load in Pre-Peak Curve
DISCUSSION TOPICS

A Summary of SCB Test Results
Mix Criteria and Variables

• Air Void: 5.5% (Final SCB Specimen)

• Design Binder Content (and +0.5%)

• Mixes with 15% RAP at Design BC and at 0.5% Higher Binder Content

• Mixes at higher RAP Contents

• NMAS: 4.75, 9.5mm, 12.5mm, 19mm, 25mm
Plant vs Lab, and Aging Effect

Lab Prepared Mix
- Short Term Aged (2hr @ 275F)
- Long Term Aged (5 days @ 185F)

Plant Prepared Mix
- Short Term Aged
- Long Term Aged
Summary of SGC Plugs Tested (85)

<table>
<thead>
<tr>
<th>Source</th>
<th>Mix Origin</th>
<th>Mix Condition</th>
<th>NMAS, mm</th>
<th>Binder Grade</th>
<th># of Binder Contents</th>
<th>RAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Plant</td>
<td>Long</td>
<td>9.5</td>
<td>64-22</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>02</td>
<td>Plant/Lab</td>
<td>Short/Long</td>
<td>9.5</td>
<td>64-22</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>03</td>
<td>Plant</td>
<td>Short/Long</td>
<td>9.5</td>
<td>64-22</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>04</td>
<td>Plant/Lab</td>
<td>Long</td>
<td>9.5</td>
<td>64-22</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>05</td>
<td>Plant/Lab</td>
<td>Short</td>
<td>4.75, 9.5, 25</td>
<td>64-22</td>
<td>4</td>
<td>0, 15, 30</td>
</tr>
<tr>
<td>06</td>
<td>Plant/Lab</td>
<td>Short/Long</td>
<td>9.5</td>
<td>64-22</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>07</td>
<td>Lab</td>
<td>Long</td>
<td>9.5, 19</td>
<td>64-22</td>
<td>2</td>
<td>0, 15</td>
</tr>
<tr>
<td>08</td>
<td>Lab</td>
<td>Short</td>
<td>9.5</td>
<td>64-22</td>
<td>4</td>
<td>10, 15</td>
</tr>
<tr>
<td>09</td>
<td>Lab</td>
<td>Long</td>
<td>9.5</td>
<td>64-22</td>
<td>1</td>
<td>15, 20</td>
</tr>
<tr>
<td>10</td>
<td>Lab</td>
<td>Short/Long</td>
<td>9.5</td>
<td>64-22</td>
<td>2</td>
<td>15, 20</td>
</tr>
<tr>
<td>11</td>
<td>Lab</td>
<td>Long</td>
<td>9.5</td>
<td>64-22</td>
<td>1</td>
<td>0, 15</td>
</tr>
</tbody>
</table>
Air Void Comparison

![Air Void Comparison Graph](image-url)

- **NECEPT Measured AV, %**
- **Reported AV, %**
Specimen Preparation

- **SGC Specimen or Field Cores**
- **Cut to Ensure Minimum AV Gradient**
- **Obtain Density**
- **Condition Specimens at Test Temperature**
- **Conduct Test**
340 TEST SCB Specimens

Specimens After Cutting Ready for Testing

Specimens Before (L) / After (R) Testing
A Typical High Quality Test Result

4 Specimens – Same Plug
Data Range: Peak Load

STOA
Average = 3,337 N

LTOA
Average = 4,124 N
Data Range: Flexibility Index

STOA
Average = 8.1

LTOA
Average = 4.6
General Observations

1. Higher AC Content \rightarrow higher F.I.
2. Higher RAP content lower F.I.
3. Longer aging \rightarrow lower F.I.
4. Plant mix has higher F.I. than lab mix
5. Higher voids \rightarrow higher F.I.
6. SMA mix delivers higher F.I.
7. Finer mix with high BC \rightarrow higher F.I.
Binder Content Effect

Plant Mix

Flexibility Index vs. Binder Content, %

- STOA
- LTOA
RAP Content Effect

All Specimens were STOA
Aging Effect

\[y = 0.2694x + 0.9484 \]

\[R^2 = 0.6801 \]
SMA vs Conventional Mix

Flexibility Index

<table>
<thead>
<tr>
<th>Specimen</th>
<th>BC (%)</th>
<th>AV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen 1</td>
<td>6.9%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Specimen 2</td>
<td>6.9%</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

PG64-22 + 15%RAP

PG76-22 + 0%RAP
Where should we go next?

1. Test mix(es) with proven good long term performance.

2. Track mix performance in the field to verify lab predictions.
DISCUSSION TOPICS

3 Long Life Asphalt Pavements (SMA)
Performance Test & LLAP driven by:

- TQI
- STIC
LLAP Best Practices

• MTV Required

• Longitudinal Joint Density Specification

• **RIDE SPECIFICATION OPTIONAL**

• Tack Coat Every Layer (New Section 460)

• % IMPORTANT WITHIN TOLERANCE (PWT) ACCEPTANCE

• **INCENTIVIZE CRITICAL ELEMENTS (I.E. MAT DENSITY)**

• PERFORMANCE TESTS
Rutting Test

• Hamburg Wheel Tacking Test. (AASHTO T 324)
 • Measures rutting potential and gives an indication of moisture sensitivity.
 • Gyratory samples %7.0 (+/- %1.0) air voids
 • Test run at 131° F (55° C)
 • 12.5mm (0.5 inch) rut at 20,000 cycles general rule of thumb for limit on superpave.
Cracking Test

- **Disk-Shaped Compact Tension (DCT) testing.** (ASTM D7313)
 - Measures fracture energy
 - Gyratory samples %7.0 (+/- %1.0) air voids.
 - Test run at 10°C above the low PG mix designation. (-12°C (10.4°F) for PG64-22)
 - Fracture energy requirements vary depending on mix type (SMA) and layer (wearing, binder)
Cracking Test

- **Illinois Flexibility Index** Test (IFIT) (AASHTO TP 124) (SCB TEST)
 - Measures fracture energy and post peek slope.
 - Uses fracture energy and load/displacement slope to compute Flexibility Index.
 - Gyratory samples %7.0 +/- %1.0 air voids
 - Test run at 250°C +/- 0.5°C (770°F).
 - Flexibility Index requirements vary depending on mix type (SMA) and layer (wearing, binder)

\[FI = \frac{G_f}{m} \times A \]
Cracking Test

- **Overlay Test (OT). (TEX-248-F)**
 - Measures fatigue or reflective cracking potential.
 - Gyratory samples 7.0 ± 1.0 air voids.
 - Test run at 25°C (77°F).
 - Applies load to induce 0.025 (3/128ths) inches displacement.
 - Number of cycles to failure is reported along with percent decline in load.
Long Life Asphalt Projects – DCT data
Long Life Asphalt Projects – IFIT Data
Long Life Asphalt Projects – Overlay Test Data
Long Life Asphalt Paving Project - IFIT

IFIT Performance Diagram

- Lab Samples
- Core Samples
Implementation Challenges

- **Implementation will not be quick or simple**
 - Pick performance test(s)
 - Decide on test protocols.
 - Specification pilot(s).
 - Who will be doing testing and how large of an investment is the equipment?
 - Contractors / Producers
 - Special Testing Labs
 - Enough lead time between project bid and paving?
 - Trained technicians to run testing?
 - After the initial rush to get testing done will there be enough tests run to sustain an industry?
DISCUSSION TOPICS

4 RAP/RAS With Rejuvenators
Objectives of the Study

➢ Evaluate performance-based BMD for mixes with recycled materials and rejuvenators via binder tests and mixture mechanical tests.

Focus on intermediate and high temperature performance
Test Program – SCB Fracture Test

- Followed IFIT with two modifications

- Displacement Rate: 5 mm/min

- Test Temperature: 20°C [Using Effective Temperature (El-Basyouny and Jeong 2009)]
Test Program – Hamburg Test

- Evaluate Resistance to Permanent Deformation
- Following AASHTO T 324
- Test Temperature 50°C
- Two Replicates

Hamburg Wheel Tracking Device Used in the Study
Test Program – Binder Tests

Intermediate Temp Performance
- Glower Rowe (G-R) Damage Parameter
 - Temp/Frequency Sweep Test
 - Extrapolated \([G^* \cdot \cos(\delta)^2 \sin \delta]\) at 15°C and 0.005 rad/s
- \(G^*\) at 20°C and 10 rad/s
 - Direct Measurement

High Temp Performance
- High Temperature Continuous Grade
- Multiple Stress Creep Recovery (MSCR)
 - Non-recoverable creep compliance \(J_{nr}\)
 - 100 Pa and 3,200 Pa Stress levels
Benchmark Work – Materials

Six Benchmark Mixes

- Dolomite/limestone aggregate
- 9.5 mm Superpave gradation
- PG58-28 and PG76-22
- RAP (6.4% residual binder) – two Levels
- RAS (21% residual binder)

Gradation of All Benchmark Mixes
SCB Test Results – Flexibility Index (FI)

- Higher Aging → Lower FI
- Higher RAP/RAS → Lower FI
SCB Test Results – Peak Load (PL)

- Higher Aging ➔ Higher Strength
- Higher RAP/RAS ➔ Higher Strength
Rejuvenator Effect – Materials

- Dolomite/limestone aggregate
- 9.5 mm Superpave gradation
- **PG58-28**

- **35%** RAP (6.4% residual binder, **45% RBR**)

- Rejuvenator **A** (*Modified vegetable oil*, multiple dosages)
Effect of Rejuvenator Content & Blending Methods

- Higher Rej Content → Higher FI
- Higher Rej Content → Lower Strength
Effect of Rejuvenator Dosage

- resembles typical balanced mix design plot
- Threshold Values on FI and Load?
Hamburg Test Results – Rut Depth

Rut Depth (RD) Under Different Rejuvenator Dosages
Cross Comparison – Rut Depth vs. Peak Load

(All mixes with 35% RAP)
Cross Comparison – Binder to Mix

(All mixes with 35% RAP)
Cross Comparison – Binder to Mix

(All mixes with 35% RAP)
Cross Comparison – Binder to Mix
Expanded Study – Materials

- PG58-28/PG64-22/PG76-22
- RAP (6.4% residual binder, 25%&35%)
- RAS (21% residual binder, 5%)
- All Blended with PG58-28

- Virgin Binder & Mix

- Rejuvenator A (Modified vegetable oil, up to 8% to binder)
- **Rejuvenator B (bio-based agent, 8% to binder)**
- **Rejuvenator C (hydrolene product, 8% to binder)**
- All Blended with PG58-28 and 35%RAP (45%RBR)

- RAP/RAS Binder & Mix

- Rejuvenator Binder & Mix
Cross Comparison with More Mixes

- LTOA/RAP/RAS reduces FI
- Rejuvenator increases FI
- Mixes with/without RAP/RAS form two distinct patterns
Conclusions

- Blending methods **do not** affect effectiveness of rejuvenators
- Optimizing Rejuvenator
 - Increases FI, Decreases PL (mix strength), and; Increases Rutting
- Rejuvenator decreases high temp continuous grade and raises Jnr.
- Adding rejuvenator decreases G* and G-R at intermediate temp.
DISCUSSION TOPICS

5 IDEAL Test Initiative
IDEAL Cracking Test for Asphalt Concrete

Indirect Tensile Test

Indirect Tensile Asphalt Cracking Test

IDEAL-CT

Proposed by Research at Texas Transportation Institute (TTI)
The Brazilian Test
(The Split Test or Indirect Tensile Test)

- Tensile Strength of Concrete (Carneiro, 1943)
- Tensile Strength of Stabilized Materials (Hudson, Kennedy, 1967)
- Tensile Strength of Asphalt (Kennedy et al., 1969)
- Tensile Strength of Rocks (ISRM, 1978)
Resilient Modulus, ASTM D7369
Repeated Haversine Loading

\[
\mu = \frac{3.588 + 0.2699 \frac{\Delta V}{\Delta H}}{0.0627 - \frac{\Delta V}{\Delta H}}
\]

\(\Delta V\) = recoverable vertical deformation
\(\Delta H\) = recoverable horizontal deformation
\(\mu\) = Poisson’s ratio

\[M_r = \frac{P}{(\Delta H)xt}(0.2699 + \mu)\]

\(P\) = load
\(t\) = thickness
\(M_r\) = Resilient Modulus
Asphalt Concrete Creep & Strength Test

Indirect Tensile Test

\[S_t = \frac{2P}{\pi t D} \]
Indirect Tensile Test (for TSR)
Indirect Tensile Test (for TSR)

IDT Test at -20°C, 12.5mm/min

Stress, psi

Strain, %
IDEAL – Test Results (Similar to SCB)

Fracture Work = Area under the curve
Fracture Energy $G_f = \frac{\text{Fracture Work}}{\text{Area}}$

$G_f = \frac{\text{Fracture Work}}{(tD)}$

$t = \text{specimen thickness}$

$D = \text{specimen diameter}$
IDEAL – Test Results

Criteria established based on CT_{Index}

$$CT_{Index} = \frac{G_f}{P_\bar{l}} \times \left(\frac{l_{75}}{D} \right)$$

$$\frac{P_\bar{l}}{l} = |m_{75}| = \frac{P_{85} - P_{65}}{l_{85} - l_{65}}$$
IDEAL – Test Results – An Example

Source of Graph: Final Report, NCHRP IDEA Project 195
Fujie Zhou, Texas A &M Transportation Institute,
January 2019
Should We Look at IDEAL-CT for PA mixes?

- Need a crack test and this looks good.
- Test has potential for both design and QC
- Easy to do
- Correlates well with SCB
- Use with both cores and lab specimens
- Could use to catalog PA mixes
Thank You!