

Moving towards Performance Based Testing Semi-Circular Bend Test

Pennsylvania Asphalt Pavement Association 58th Annual Conference January 17, 2018

Mansour Solaimanian, Pennsylvania State University

Our Great Folks on This Project

Scott Milander NECEPT Lab Coordinator

Xuan Chen PhD Candidate

Outline

- A Review of Asphalt Concrete Fatigue Tests
- Semi-Circular Bend (SCB) Test
- PennDOT/Industry Initiative on Performance Testing

Outline

- A Review of Asphalt Concrete Fatigue Tests
- Semi-Circular Bend (SCB) Test
- PennDOT/Industry Initiative on Performance Testing

Lab Scale Tests

Monotonic Tests

- Indirect Tensile
- Semi-Circular Bend
- Disk-Shaped Compact Tension

Cyclic Tests

- Four Point Bending Beam
- Indirect Tensile
- Uniaxial Push-Pull
- Texas Overlay

Lab Scale Tests (Cyclic Tests)

Fatigue/Cantilever Trapezoid

Outline

- A Review of Asphalt Concrete Fatigue Tests
- Semi-Circular Bend (SCB) Test
- PennDOT/Industry Initiative on Performance Testing

Background on SCB

- Early Work on Rocks (Chong and Kuruppu, 1984)
- Introducing SCB for Asphalt Testing (Molenaar, 2000 & 2002)
- Further Research (Mohammad et al., 2004) LA
- Further Research IFIT (Algadi et al., 2015) IL
- Implementation in Specs (Mohammad et al., LTRC, 2016)

SCB Test Apply on Rocks (Initial Application)

Photo Source: Lim et al. 1984

SCB Test Applied to Rocks

SCB Testing of Granite Rock

Photo Source: Dynamic Behavior of Materials, Vol.1

SCB Test Applied to Rocks

Compression-Induced Fracture Surfaces and Failure Mechanism

Photo Source: Advances in Materials Science and Engineering Vol. 2014, Article 814504

SCB Test Setup

Specimen Thickness: 50 mm

Notch Depth: 15 mm

Notch Width: 1.5 mm

Parameters Used For Evaluation

Fracture Energy

$$G_f = \frac{W_f}{B \cdot L}$$

B: Specimen Thickness

L: Ligament Length

Flexibility Index

$$FI = A \times \frac{G_f}{abs(m)}$$

A: Constant

Stiffness Index

Slope @ 50% Peak Load in Pre-Peak Curve

Advantages of SCB Test

- Specimen Easily Prepared Using SGC or Field Cores
- Four Specimens from One Compacted Mix
- Easy to Perform and Simple to Analyze
- Possible To Perform Test Using Marshall-Type Stability Tester

Test Loading Rate

Current Protocols:

- 50 mm/min (too fast, not enough data points, higher COV)
- 0.5 mm/min (too slow, affected by creep)

Findings:

 Loading rate between 5 to 20 mm/min will minimize the effect of creep, and provide a reasonable range for FI for long term aged mix.

Specimens After Cutting Ready for Testing

Specimens Before (L) / After (R) Testing

Typical Load vs Displacement Curves

3 Replicates, PG 58-28, 25°C

Effect of Binder Grade (Stiffness)

STOA, 7% AV, 5.2% BC

Outline

- A Review of Asphalt Concrete Fatigue Tests
- Semi-Circular Beam (SCB) Test

 PennDOT/Industry Initiative on Performance Testing

How Did it Start?

- Move to Performance Testing
- Initiated by Asphalt Quality Improvement
 Committee and PAPA
- Industry Expressing Interest in Participating

Purpose of the Effort

- Bridge the Gap to Performance Testing
- Investigate Performance of PA Mixes in SCB
- Develop A Database of SCB Test Results
- Evaluate Sensitivity of the PA Mixes to the Test
- Evaluate Correlation with Field Performance

Mix Criteria and Variables

- Air Void: 5.5% (Final SCB Specimen)
- Design Binder Content (and +0.5%)
- Mixes with 15% RAP at Design BC and at 0.5% Higher Binder Content
- Mixes at higher RAP Contents
- NMAS: 4.75, 9.5mm, 12.5mm, 19mm, 25mm

Plant vs Lab, and Aging Effect

What Do We Do with the Plugs?

Once Received at NECEPT, Enter into Database:

- Identification Code
- Source
- Date of Compaction
- Date of Receipt at NECEPT
- Lab vs Plant Mix
- Aging Condition
- Air Void

Current Status (as of 1/15/18)

Current Status (As of 1/15/18)

- # of plugs from producers varies:
 1, 2, 3, 4, 10, 16
- All with PG 64-22
- First Plug received: 11/28/2017
- Latest Plug received: 1/10/2018

Processing/Testing Specimens

- Photos
- Specific Gravity Measurement
- Cut into 4 Specimens
- Specific Gravity Measurement
- Conduct SCB

Specimen Preparation

- SGC Specimen or Field Cores
- Cut to Ensure Minimum AV Gradient
- Obtain Density
- Condition Specimens at Test
 Temperature
- Conduct Test

Repeatability of Industry SCB Specimens

Mix Source A: Plant mix, NMAS 9.5mm, PG64-22, 4.5% AV.

Mix Source A: Plant mix, NMAS 9.5mm, PG64-22, 4.5% AV.

Mix Source A: Plant mix, NMAS 9.5mm, PG64-22, 4.5% AV.

Waiting for More Specimens

- Continue Receiving Material
- Continue Cataloging/Testing Materials
- Continue Analysis

PLEASE:

- Label Materials Properly
- Ship/Transport Safely
- Include Mix Information/JMF/Compaction Date

Thank You!

