Moving towards Performance Based Testing
Semi-Circular Bend Test

Pennsylvania Asphalt Pavement Association
58th Annual Conference
January 17, 2018

Mansour Solaimanian,
Pennsylvania State University
Our Great Folks on This Project

Scott Milander
NECEPT Lab Coordinator

Xuan Chen
PhD Candidate
Outline

• A Review of Asphalt Concrete Fatigue Tests
• Semi-Circular Bend (SCB) Test
• PennDOT/Industry Initiative on Performance Testing
Outline

• A Review of Asphalt Concrete Fatigue Tests
 • Semi-Circular Bend (SCB) Test
 • PennDOT/Industry Initiative on Performance Testing
Lab Scale Tests

Monotonic Tests
• Indirect Tensile
• Semi-Circular Bend
• Disk-Shaped Compact Tension

Cyclic Tests
• Four Point Bending Beam
• Indirect Tensile
• Uniaxial Push-Pull
• Texas Overlay

Picture Courtesy: IPC Global, Umass, Penn State
Lab Scale Tests (Cyclic Tests)

Texas Overlay Tester

Fatigue/Cantilever Trapezoid

Bending Beam
Outline

• A Review of Asphalt Concrete Fatigue Tests
• Semi-Circular Bend (SCB) Test
• PennDOT/Industry Initiative on Performance Testing
Background on SCB

• Early Work on Rocks (Chong and Kuruppu, 1984)
• Introducing SCB for Asphalt Testing (Molenaar, 2000 & 2002)
• Further Research (Mohammad et al., 2004) - LA
• Further Research – IFIT (Alqadi et al., 2015) - IL
• Implementation in Specs (Mohammad et al., LTRC, 2016)
SCB Test Apply on Rocks (Initial Application)

Photo Source: Lim et al. 1984
SCB Test Applied to Rocks

SCB Testing of Granite Rock

Photo Source: Dynamic Behavior of Materials, Vol.1
SCB Test Applied to Rocks

Compression-Induced Fracture Surfaces and Failure Mechanism

Photo Source: Advances in Materials Science and Engineering Vol. 2014, Article 814504
SCB Test Setup

Specimen Thickness: 50 mm
Notch Depth: 15 mm
Notch Width: 1.5 mm
Parameters Used For Evaluation

Fracture Energy
\[G_f = \frac{W_f}{B \cdot L} \]

Flexibility Index
\[FI = A \times \frac{G_f}{\text{abs}(m)} \]

Stiffness Index
Slope @ 50% Peak Load in Pre-Peak Curve

B: Specimen Thickness

L: Ligament Length

A: Constant
Advantages of SCB Test

- Specimen Easily Prepared Using SGC or Field Cores
- Four Specimens from One Compacted Mix
- Easy to Perform and Simple to Analyze
- Possible To Perform Test Using Marshall-Type Stability Tester
Test Loading Rate

Current Protocols:
- 50 mm/min (too fast, not enough data points, higher COV)
- 0.5 mm/min (too slow, affected by creep)

Findings:
- Loading rate between **5 to 20 mm/min** will minimize the effect of creep, and provide a reasonable range for FI for long term aged mix.
Specimens After Cutting
Ready for Testing

Specimens Before (L) / After (R) Testing
Typical Load vs Displacement Curves
3 Replicates, PG 58-28, 25°C
Effect of Binder Grade (Stiffness)

STOA, 7% AV, 5.2% BC
Outline

• A Review of Asphalt Concrete Fatigue Tests
• Semi-Circular Beam (SCB) Test

• PennDOT/Industry Initiative on Performance Testing
How Did it Start?

• Move to Performance Testing

• Initiated by Asphalt Quality Improvement Committee and PAPA

• Industry Expressing Interest in Participating
Purpose of the Effort

- Bridge the Gap to Performance Testing
- Investigate Performance of PA Mixes in SCB
- Develop A Database of SCB Test Results
- Evaluate Sensitivity of the PA Mixes to the Test
- Evaluate Correlation with Field Performance
Mix Criteria and Variables

- Air Void: 5.5% (Final SCB Specimen)
- Design Binder Content (and +0.5%)
- Mixes with 15% RAP at Design BC and at 0.5% Higher Binder Content
- Mixes at higher RAP Contents
- NMAS: 4.75, 9.5mm, 12.5mm, 19mm, 25mm
Plant vs Lab, and Aging Effect

Lab Prepared Mix
- Short Term Aged (2hr @ 275F)
- Long Term Aged (5 days @ 185F)

Plant Prepared Mix
- Short Term Aged
- Long Term Aged
What Do We Do with the Plugs?

Once Received at NECEPT, Enter into Database:

- Identification Code
- Source
- Date of Compaction
- Date of Receipt at NECEPT
- Lab vs Plant Mix
- Aging Condition
- Air Void
Current Status (as of 1/15/18)

- # of producers, 7
- # of plugs, 41
- Of Plant Mixes, 2
- Of Lab Mixes, 2
- Of SCB Tests, 1
- Of plants (4.75, 9.5, 19, 15)
- Of producers (0, 10, 15)
Current Status (As of 1/15/18)

- # of plugs from producers varies: 1, 2, 3, 4, 10, 16
- All with PG 64-22
- First Plug received: 11/28/2017
- Latest Plug received: 1/10/2018
Processing/Testing Specimens

• Photos
• Specific Gravity Measurement
• Cut into 4 Specimens
• Specific Gravity Measurement
• Conduct SCB
Specimen Preparation

- SGC Specimen or Field Cores
- Cut to Ensure Minimum AV Gradient
- Obtain Density
- Condition Specimens at Test Temperature
- Conduct Test
Industry SCB Test Results

Repeatability of Industry SCB Specimens

![Graph showing load vs. displacement for Industry SCB specimens.](image)
Industry SCB Test Results

Mix Source A: Plant mix, NMAS 9.5mm, PG64-22, 4.5% AV.
Industry SCB Test Results

Mix Source A: Plant mix, NMAS 9.5mm, PG64-22, 4.5% AV.
Industry SCB Test Results

Mix Source A: Plant mix, NMAS 9.5mm, PG64-22, 4.5% AV.
Waiting for More Specimens

• Continue Receiving Material
• Continue Cataloging/Testing Materials
• Continue Analysis

PLEASE:
• Label Materials Properly
• Ship/Transport Safely
• Include Mix Information/JMF/Compaction Date
Thank You!