PennDOT District 11

Long Life Asphalt Performance Testing

January 17, 2018

Jim Foringer, P.E.

Assistant District Executive Construction Division

Neal Fannin, P.E.

Pavement Materials Engineer BOPD Construction and Materials Division

LLAP Construction Specifications

- MTV Required
- Longitudinal Joint Density Specification
- RIDE SPECIFICATION OPTIONAL
- Tack Coat Every Layer (New Section 460)
- % WITHIN TOLERANCE (PWT)
 ACCEPTANCE
- INCENTIVIZE CRITICAL ELEMENTS (I.E. MAT DENSITY)
- Performance Testing

LLAP Performance Tests

- Disk-Shaped Compact Tension (DCT) Testing
- Semicircular Bend (SCB)
 Testing
- Semicircular Bend at Intermediate Temperature (SCBIT) Testing
- Texas Overlay Testing
- Rutting Susceptibility Testing

SR 279-A83

- Contract Cost: \$87,947,686.73
- Total Tonnage 185,000 Tons
- PWT-HOLA ~ 74 Lots
 - Binder Course 2 1/2"
 - SMA Wearing Course 1 ½"
- Performance Testing of Proposed Mix Designs (For Information Only)
- Performance Verification Sampling (For Information Only)
 - 2 additional cores per sublot of initial lot, and 1 additional lot selected at random (Next paving season)

SR 279-A83

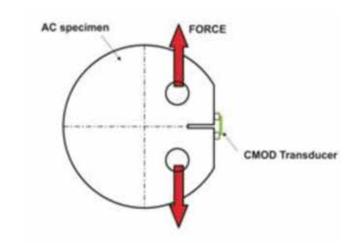
- Average Pay Factors
 - Asphalt Content 103%
 - #200 Sieve 104%
 - Primary Control Sieve 103%
 - Density 104%
- Current average IRI = 37.4

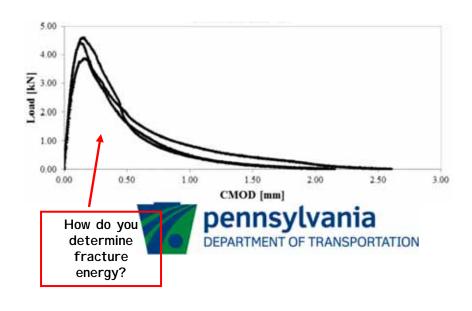
376-B09

- Contract Cost: \$18,385,803.42
- Total Tonnage = 39,318 Tons
- PWT-HOLA 12 Lots
 - SMA Wearing Course 1 ½" Depth
- Performance Testing Includes:
 - Proposed Mix Designs
 - Testing for acceptance
- Performance Verification Sampling
 - 2 additional cores per sublot as per spec
 - 120 additional cores!
 - Tests performed changed to just DCT, I-FIT,
 Hamburg
 pennsylvania

SR 376-B09

- Average Pay Factors
 - Asphalt Content 103%
 - #200 Sieve 102%
 - Primary Control Sieve 103%
 - Density 100%
- Average IRI 30.3



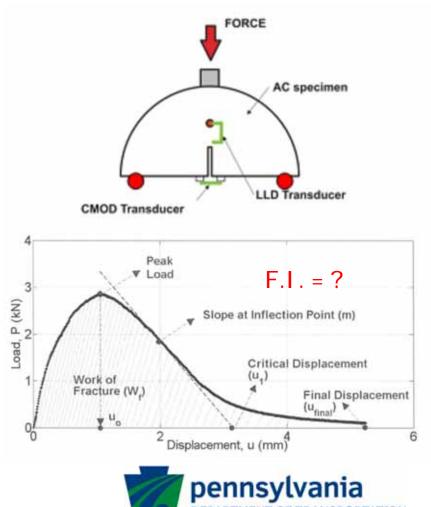

Planned Usage Moving Forward

Performance Testing

- Disk-Shaped Compact Tension (DCT) testing. (ASTM D7313)
- Required for Mix Design
 - Measures fracture energy
 - Samples fabricated from gyratory samples or cores.
 - Test run at 10° C below the low PG mix designation.
 - Fracture energy requirements vary depending on mix type (SMA) and layer (wearing, binder)

Disc Shaped Compact Tension (DCT) Test

- ASTM D7313
- Prepare sample as below
- Measure fracture energy (Min req = 690 J/m²)

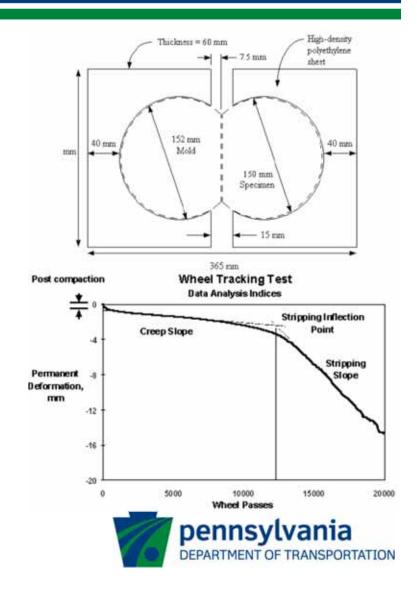


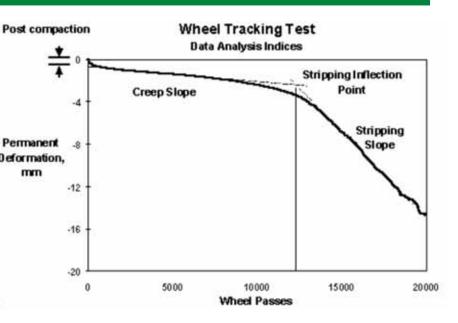
Performance Testing

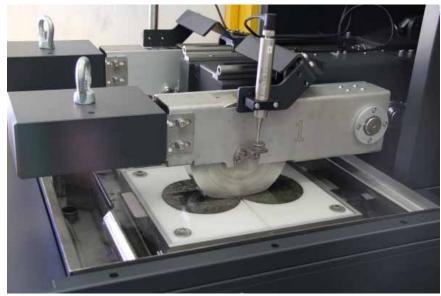
- Illinois Flexibility Index Test (IFIT).
- Measures fracture energy.
 - Uses fracture energy and load/displacement slope to compute Flexibility Index.
 - Samples fabricated from gyratory samples or cores.
 - Test run at 25° C.
 - Fracture energy requirements vary depending on mix type (SMA) and layer (wearing, binder)

Semicircular Bend at Intermediate Temp

- Point load applied
- Measure fracture energy
- Includes Illinois Flexibility Index (I-FIT)




Hamburg Wheel Tracking Test


- Hamburg Wheel Tacking Test. (AASHTO T 324)
- Required for Mix Design
 - Measures rutting potential
 - Samples fabricated from gyratory samples or cores.
 - Test run at 131° F (55°
 C)
 - Required cycles and rut depth limits vary depending on mix type (SMA) and layer (wearing, binder)

Rutting Susceptibility Test (ASTM T 324)

- Hamburg Wheel-Track Testing
- Test samples at 131°F
- Measure rut depth after of mention, 20,000 cycles

DCT Test Results

• Mix Design Phase:

SMA Mix $\#1 - 540.4 \text{ J/m}^2$

SMA MIX #2 – 608.8 J/m²

19mm Mix #1 - 417.6 J/m²

DCT Test Results

Verification Samples:

SR 279-A83

19mm Binder – Brittle Failure

SMA Wearing – 634.7 J/m²

SR 376-B09

SMA Wearing (Lots 1 - 3) - 709.2, 796.4, 562.5 J/m²

I-FIT Test Results

• Mix Design Phase:

SMA Mix #1 – 13.96 J/m²

SMA MIX $\#2 - 7.04 \text{ J/m}^2$

 $19mm Mix #1 - 2.8 J/m^2$

I-FIT Test Results

Verification Samples:

<u>SR 279–A83</u> SMA Wearing – 90.2 J/m²

<u>SR 376-B09</u> SMA Wearing (Lots 1 – 3) – 99.1, 109.8, 77.6 J/m²

Hamburg Test Results

• Mix Design Phase:

SMA Mix #1 - 4.46 mm

SMA MIX #2 - 6.26 mm

19mm Mix #1 - 4.07 mm

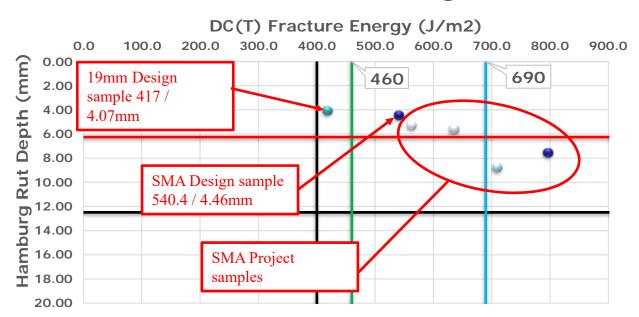
Hamburg Test Results

Verification Samples:

SR 279-A83

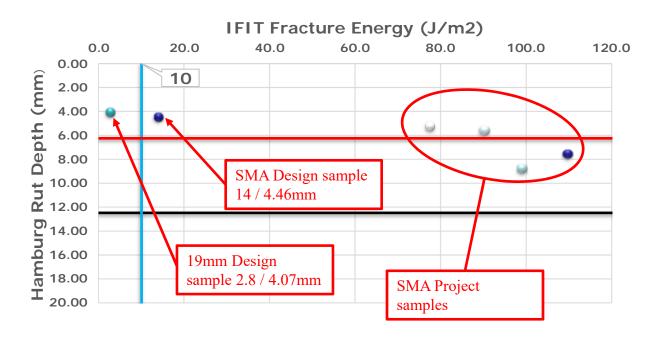
19mm Binder – 5.51 mm

SMA Wearing - Invalid test - slipped core


SR 376-B09

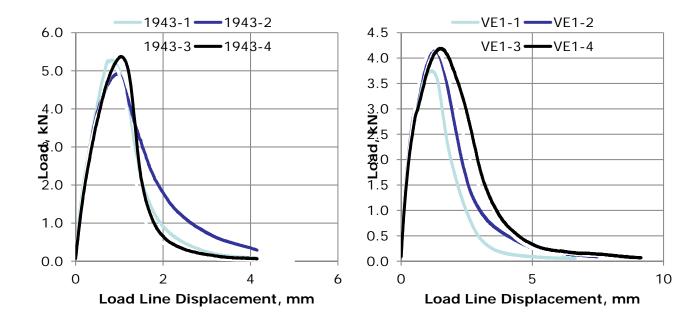
SMA Wearing (Lots 1 - 3) - 8.80, 7.57, 5.26 mm

DCT Data


DCT Performace Diagram

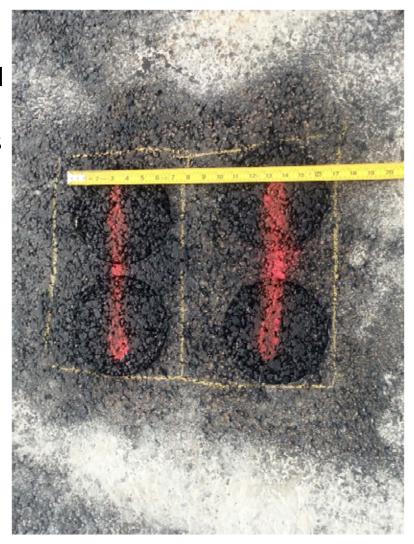
IFIT Data

IFIT Performace Diagram



IFIT Plots

19mm


SMA

Lessons Learned

- Field Perspective:
 - Performance samples should not be taken at same location as acceptance cores
 - Care must be taken to keep cores organized and logged (Station/offset)

Lessons Learned

- Lab Perspective:
 - Conditioning time for DCT should be minimum needed to make plug
 - 25mm is not applicable to these tests
 - With 10 cores per lot, it is hard to perform all tests called out for in spec due to possible invalid tests requiring
 - Give yourself time during mix design phase to perform tests

Pros

- Potential to provide a more balanced mix design.
- Potential to give producers more flexibility in the mix design process

Cons

- Currently, high number of samples need to be taken
- Potential for error in documentation is high due to number of samples
- Number of testing facilities able to perform necessary tests is currently low – Long lead times
- Insufficient time to perform additional up-front mix design changes and performance testing

QUESTIONS

