Asphalt Performance Testing and Specification Development

Eshan V. Dave, Ph.D. University of New Hampshire 57th Annual Pennsylvania Asphalt Paving Association Conference Hershey, PA 18th January 2017

Lab Performance Testing, Eshan Dave, PAPA 01/18/2017

- Introduction: Performance-based Specifications
- Fracture Energy as Performance Measure
- MnDOT Performance Based Specification
 - Regional Validation
 - Pilot Implementation
 - Sensitivity of Fracture Energy to Thermal Cracking Performance
 - Specification Refinement Efforts
 - Round Robin Testing
- Summary & Conclusion

Asphalt Performance Testing

Goals:

- <u>Identify</u> mixtures prone to performance problems during the mix design process
- <u>Identify</u> potential performance problems during production
- -Predict performance during mix design and production
 - Warranties
 - Performance Specifications
- <u>Evaluate</u> new materials or design tools to improve performance

Field Cracking and Volumetric Measures

Material Specifications

 Specification Development Continuum
 – TRB Circular on "Development of Warranty Programs for HMA Pavements"

 Use of <u>performance tests</u> in material specifications is an alternative to wide-spread warranty pavement requirements

Challenges in Implementation of Performance Based Specifications

- Availability of suitable performance indicator(s)
 - Requires a performance test
- Implementation Needs:
 - Spec. needs to be relevant, repeatable, achievable, and reliable
 - Sampling and specimen conditioning
- Cost
 - Manpower needs
 - Equipment needs
- Other challenges:
 - Time limit on obtaining lab results
 - Teething problems

Balanced Mix Design: ETG Definition

 Asphalt mix design using *performance tests* on appropriately *conditioned specimens* that address *multiple modes of distress* taking into consideration mix aging, traffic, climate and location within the pavement structure

Lab Performance Testing, Eshan Dave, PAPA 01/18/2017

Disk-Shaped Compact Tension (DCT) Test

- ASTM D7313-13
- Loading Rate:
 - Crack Mouth Opening Displacement
 - CMOD Rate = 1.0 mm/min
- Measurements:
 - CMOD
 - Load

Semi-Circular Bend (SCB) Test

- Multiple variants exist
 - Early work in Europe
 - Simultaneous cold (Marasteanu et al. MN) and intermediate temperature (Mohamed et al. – LA) versions
 - Recent work from Al-Qadi et al. (IL) → AASHTO TP 105
- AASHTO TP 105 (I-FIT)
 - Line load control, loading rate = 50 mm/min
 - Test temperature = 25 deg. C
- Measurements:
 - Displacement
 - Load
- Outcomes
 - Fracture Energy
 - Flexibility Index (FI)

Fracture Parameters

Fracture work: Area under Load-Displacement curve

Fracture Energy, G_f : Energy required to create unit fracture surface $G_f = \frac{Fracture Work, S_f}{Fracture Area}$

Flexibility Index, FI: FI = G_f / m

Specimen Preparations

Current Adoption Efforts of Fracture Tests in Performance Based Specifications

- Semi-Circular Bend (SCB)
 - -LA Version Intermediate Temperature \rightarrow Louisiana DOTD
 - Wisconsin for High RAM Projects (2014 and 2015)
 - -IL and MN Version at Intermediate Temperature:
 - Illinois in pilot implementation stages: Combination of Hamburg Wheel Tracking Test and SCB Flexibility Index (I-FIT)
- Disk-shaped Compact Tension (DCT)
 - -City of Chicago
 - -Illinois Tollways
 - -Wisconsin for High RAM Projects (2014 and 2015)
 - Minnesota Department of Transportation → Discussed
 here

Low Temperature Cracking Pooled Fund Study

- Primary Distress: Thermal cracking
- Minnesota (Lead State), Connecticut, Iowa, Illinois, New York, North Dakota, Wisconsin
- TPF-5(080): 2004 2006 (Phase-I)

- Extensive evaluation of performance tests (binder and mixtures)
- TPF-5(132): 2008 2012 (Phase-II)
 - SCB and DCT fracture energy tests evaluated for nine pavement sections
 - 4 and 7% air void level, short term and long term aging conditions
 - Outcome: Performance specifications with limited validation through five field sections

Fracture Energy as Performance Measure: Results from Various Studies (~ 50 sections)

Fracture Energy (J/m²) - CMOD Basis

Pooled Fund Study LTC Performance Specifications

- Based on traffic levels
- Limits based on:
 - Fracture energy test @ 10°C above 98% reliability Superpave Low Temperature PG (PGLT)
 - Low temperature cracking performance model (*IlliTC*)

Limits	Project Criticality / Traffic Level					
Linits	High (> 30M ESALs)	Medium (10 – 30M ESALs)	Low (< 10M ESALs)			
DCT Fracture Energy (J/m ²)	690	460	400			
IlliTC Cracking Prediction (m/km)	< 4	< 64	Not required			

MnDOT Implementation of Performance Specification

3. Determine sensitivity of fracture energy to thermal cracking performance (2013)

 4. Specification refinement efforts (specimen conditioning, practicality revisions etc.) (2014-present)

2. Pilot Implementation (2013)

1. Regional

Validation of Performance

Specifications

(2011 - 2016)

Implementation of Performance-based Specification (MnDOT) 5. Roundrobin Testing (2014-16)

Communications and Training

MnDOT Implementation of Performance Specification

3. Determine sensitivity of fracture energy to thermal cracking performance (2013)

 4. Specification refinement efforts (specimen conditioning, practicality revisions etc.) (2014-present)

2. Pilot Implementation (2013)

1. Regional

Validation of Performance

Specifications

(2011 - 2016)

Implementation of Performance-based Specification (MnDOT) 5. Roundrobin Testing (2014-16)

Communications and Training

Development and Implementation of MnDOT Performance Based Specifications

- Started with LTC Specifications from Pooled Fund Study
- Minnesota Regional Validation Studies (2011 2015)
 - -18 sites and 26 sections
 - Companion sections
 - -2004 2013 construction years
 - -Captures different binder grades and aggregates in Minnesota
 - Different construction types: New construction, overlay, and full-depth reclamation
 - -Different design traffic levels

Local Validation Example: Field Cracking Performance vs. Fracture Energy

Implementation of Performance Specification

3. Determine sensitivity of fracture energy to thermal cracking performance (2013) 4. Specification refinement efforts (specimen conditioning, practicality revisions etc.) (2014-present)

2. Pilot Implementation (2013)

1. Regional

Validation of Performance

Specifications

(2011 - 2016)

Implementation of Performance-based Specification (MnDOT) 5. Roundrobin Testing (2014-16)

Communications and Training

Development and Implementation of MnDOT Performance Based Specifications (cont.)

- Pilot Implementation on 5 projects (2013)
 - Contractor provide samples at mix design
 - TSR pucks, 7% AV, +/- 0.5%
 - DCT tests are conducted
 - If mix passes, approve for paving
 - Passing value of $G_f > 400 J/m^2$
 - If mix fails, adjust mix & try again
 - MnDOT paid for difference in cost (D-I funds)
 - Adjusted mix was used for paving a section of project
 - Testing is also conducted on production mixes

Determine Sensitivity of Thermal Cracking to Fracture Energy

- Objective: Determine the allowable variability in fracture energy for purposes of job specification
 - Req. fracture energy = 400 J/m² (if actual is 375 J/m² is it too low?)
- Approach:
 - Simulate different combinations of climates, mixes, pavement structures with different fracture energies using *IlliTC*

Asphalt Mix	PG28R	PG28R	PG34R	PG34
Clima Paver Might be su Fra cracking pe No Damage (ND)	f fracture e ufficient in erformance No data	energy by changing e of the pa	25 J/m ² the theri vement _{No data}	nal ⁵ ⊧ls ≥425
Damaged (D)	450	425-450	375-450	300-375
	≤425	≤400	≤350	NO data

Implementation of Performance Specification

3. Determine sensitivity of fracture energy to thermal cracking performance (2013) 4. Specification refinement efforts (specimen conditioning, practicality revisions etc.) (2014-present)

2. Pilot Implementation (2013)

1. Regional

Validation of Performance

Specifications

(2011 - 2016)

Implementation of Performance-based Specification (MnDOT) 5. Roundrobin Testing (2014-16)

Communications and Training

Specification Refinement

- GOAL: Improve ease, practicality and repeatability of test procedure
- Research was needed to increase ease and practicality of DCT testing
 - ASTM D7313-13 requires DCT specimens to be conditioned between 8-16 hours at test temperature before testing begins.
- Extensive evaluation of temperature conditioning procedures was conducted to investigate different temperature conditioning scenarios

Temperature Conditioning Study: Sample Results

Specification Refinement

- Several changes/additions to ASTM specification – "MnDOT Modified" version
- Temperature Conditioning Study Final Results
 - -Specimens must reach test temperature in no faster than 0.75 hours, but within 1.5 hours.
 - -Specimens must stay in conditioning chamber for a minimum of 2 hours before testing.
 - -All testing must be finished within 6 hours of initial placement into conditioning chamber

DCT Specifications: Inter-laboratory "Round Robin" Comparison Study

- Loose mix sampled from 16 projects
- Participating labs include:
 - American Engineering Testing
 - Braun Intertec
 - MnDOT OMRR
 - UMD/UNH
 - 4 specimens/project tested by each lab
- Gyratory specimens compacted by MnDOT

Preliminary Interlab Comparison Study

- Field sampled material (I-94)
 - SPWEA540E, PG 64-28
- Samples tested at MnDOT and UMD
- Interlab differences:
 - Fracture Energy: 2.4-8.1 % ⁹
 - Peak Load: 0.7-4.6%

Round Robin Testing: 8 Projects, 4 Labs

Average Fracture Energy: All Projects with XX-34 Binder 1200 1000 Fracture Energy (J/m²) 800 AFT MnDOT 600 Braun 400 200 0 TH 59 Roundabout* CSAH 133* TH 61 Little Marais TH 29 TH 62 TH 5 CSAH 5 TH 95 PG 58-34 PG 58-34 PG 58-34 PG 64-34 PG 58-34 PG 64-34 PG 58-34 PG 58-34

DCT Specifications: Effects of Specimen Preparation and Sampling on Fracture Energy

- Issue: Change in fracture energy between mix design samples and production samples
- Samples collected from 11 locations across MN
- Sample Types:
 - At mix design (provided by contractor)
 - -Loose mix collected during production
 - 4 cylinders re-heated and compacted by MnDOT
 - 4 specimens compacted on site by contractor
 - Loose mix collection site marked. Field cores taken
 1-2 days after initial collection.

MnDOT DCT Implementation Aging Evaluation Study

MnDOT DCT Fracture Energy Provisional Performance Specifications

Table DCT-1						
Minimum Average Fracture Energy Mixture						
Design Requirements for Wearing Course*						
Traffic LevelFracture Energy						
Traffic Level 2-3/PG XX-34 450 J/m ²						
Traffic Level 4-5/PGXX-34	500 J/m ²					

Table 2360-9						
Allowable Differences between Contractor and D	Department Test Results*					
Item Allowable Difference						
DCT - Fracture Energy (J/m ²)	90					
*Test a minimum of six (6) DCT test specimens according to ASTM D7313-13 MnDOT Modified						
revision dated September 1, 2015 to determine the average fracture energy of the submitted mix						
design (see MnDOT Modified for requirements of when greater that	in 6 specimens are to be tested).					

Table DCT-2							
Minimum Average Fracture Energy Mixture							
Production Requirements for Wearing Course*							
Traffic Level/PG GradeFracture Energy (J/m²)							
Traffic Level 2-3/PG XX-34 400							
Traffic Level 4-5/PGXX-34	450						

Implementation of Performance Specification

- With current evolution of asphalt mixtures (additives, recycling, production technologies) volumetric measures are no longer sufficient for controlling performance
- Fracture energy based performance tests (DCT, SCB) have shown very promising results
- Use of these tests in performance based specifications (as well as or balanced mix designs) are starting to become popular
- Implementation of performance test requires strong partnerships (agency, industry and researchers)
- MnDOT specification development: local validation, specification refinement, round-robin testing, training and communications

Currently Ongoing Efforts

- Minnesota DOT:
 - -Continued training and adoption
 - Extending DCT specifications to address reflective cracking in asphalt overlays
- National Level:
 - -Pooled Fund Study (NCAT, MnROAD partnership)
 - Several agencies are working on adoption efforts (Wisconsin, Illinois etc.)
 - -NCHRP 09-57 succession study
- Lot of work is going on, stay tuned!

Thank you for your attention!

Acknowledgement: DEPARTMENT OF TRANSPORTATION

Questions / Comments?

UNIVERSITY of NEW HAMPSHIR

Contact: eshan.dave@unh.edu

Challenges with Current (QA) Specifications

- Risk on part of agency since performance is not ensured
 - In general QA specs work well because spec limits are based on historic data
- Low incentive for innovation on part of material producers since the requirements are not tied to performance
- As material sources change the limits prescribed in specs need to be revised
- As manufacture and construction technology changes the specifications need to be revised

- Warm mix, High RAP, Newer plants and pavers

Restricts innovation and out of box thinking

Objectives

- Assess effects of long term laboratory aging on cracking (fracture) performance tests
- Determine effects of test temperature on cracking performance parameters from SCB and DCT tests
- Secondary Outcomes:
 - What can we learn from fracture behavior regarding asphalt mixtures?
 - Effect of RAP amount
 - Effect of binder type

Overview

Introduction

- -Motivation and Objectives
- -DCT and SCB Fracture Tests

Methodology and Materials

Results

- -Temperature
- -Aging Effects
- Summary & Conclusion

Current Specifications / Adoption Approaches

- Illinois Research on SCB Flexibility Index:
 - Single Test Temperature = 25 deg. C
 - Short term aged specimens following AASHTO R30
- Wisconsin High RAM Projects
 - SCB testing at 25 deg. C
 - DCT testing at specified PG LT + 10 deg. C
 - Both SCB and DCT on AASHTO R 30 long term aged procedure
 - 5 days at 85 deg. C on compacted specimens
- Minnesota Specification
 - DCT testing at 10 deg. C warmer than required 95% reliability PG LT (in other words, without 6 deg. C rounding)
 - AASHTO R30 short term aging
- Challenges: Is 25 deg. C temperature suitable for all locations? How to handle reheating and long term aging?

Testing Matrix

Age Conditioning

Mix	PG	RAP			
New York		0%			
	PG 04-22	30%			
New		0%			
Hampshire	FG 04-20	30%			

Test Temperature Study:

Mix	PG	RAP	
Virginia	76-22	0%	
	70-22	20%	
	64-22	40%	
Vormont	52-34	20%	
vermont	52-34	40%	

- Short Term Aging: Plant Production
- Long Term Aging: NCHRP 09-54
- Long term oven aging of loose mix
 - Aging Temperature = 95 °C
 - Aging Duration → Geography and structure specific
 - Current study: 0, 14 and 21 days
- All tests on plant mix, lab compacted samples
- SCB and DCT tests at multiple temperatures
- SCB: 25, 13 and 1°C
- DCT: PG LT + 10 °C
- All tests on plant mixed, plant compacted samples

Specimen Distribution

NH 0% RAP		NH 30	% RAI	2	NY 0%	6 RAP		NY 30	% RAI)	
Short-	term aş	ged	Short-	term aş	ged	Short-	term ag	ged	Short-	term aş	ged
Discs	AV	test	Discs	AV	test	Discs	AV	test	Discs	AV	test
1.A	6.6%	SCB	1.A	6.6%	DCT	1.A	6.2%	SCB	1.A	6.4%	DCT
1.B	6.5%	DCT	1.B	6.6%	SCB	1.B	6.3%	DCT	1.B	7.1%	DCT
1.C	5.7%	Extra	1.C	6.6%	Extra	1.C	7.8%	DCT	1.C	6.1%	SCB
2.A	6.5%	SCB	2.A	6.6%	SCB	2.A	6.8%	SCB	2.A	6.6%	DCT
2.B	6.3%	DCT	2.B	6.8%	DCT	2.B	7.9%	Extra	2.B	7.2%	SCB
2.C	5.8%	DCT	2.C	6.5%	DCT	2.C	6.6%	DCT	2.C	6.3%	Extra
14 day	14 days aged 14 days aged				14 day	s aged		14 day	s aged		
Discs	AV	test	Discs	AV	test	Discs	AV	test	Discs	AV	test
1.A	5.5%	Extra	1.A	7.9%	Extra	1.A	5.8%	DCT	1.A	6.9%	SCB
1.B	5.6%	DCT	1.B	7.4%	SCB	1.B	7.4%	SCB	1.B	7.6%	Extra
1.C	5.8%	SCB	1.C	6.9%	DCT	1.C	6.4%	DCT	1.C	6.2%	DCT
2.A	6.7%	DCT	2.A	7.1%	SCB	2.A	6.2%	SCB	2.A	6.5%	DCT
2.B	6.5%	SCB	2.B	7.2%	DCT	2.B	6.7%	DCT	2.B	7.1%	DCT
2.C	6.3%	DCT	2.C	6.9%	DCT	2.C	5.7%	Extra	2.C	7.5%	SCB
21 day	s aged		21 day	's aged		21 day	s aged		21 day	s aged	
Discs	AV	test	Discs	AV	test	Discs	AV	test	Discs	AV	test
1.A	6.5%	DCT	1.A	6.9%	SCB	1.A	6.8%	DCT	1.A	6.8%	DCT
1.B	6.1%	SCB	1.B	7.0%	Extra	1.B	7.4%	SCB	1.B	7.4%	DCT
1.C	6.0%	Extra	1.C	6.6%	DCT	1.C	6.3%	Extra	1.C	7.0%	SCB
2.A	6.5%	DCT	2.A	6.7%	SCB	2.A	6.5%	DCT	2.A	7.2%	SCB
2.B	6.4%	DCT	2.B	6.6%	DCT	2.B	6.8%	DCT	2.B	7.5%	DCT
2.C	6.3%	SCB	2.C	6.4%	DCT	2.C	6.6%	SCB	2.C	6.7%	Extra

NH 0%	NH 0% RAPNH 30% RAP				NY 0%	RAP		NY 30% RAP			
21 days	21 days aged21 days aged		21 days	aged		21 days aged					
Discs	AV	test	Discs	AV	test	Discs	AV	test	Discs	AV	test
1.A	6.5%	DCT	1.A	6.9%	SCB	1.A	6.8%	DCT	1.A	6.8%	DCT
1.B	6.1%	SCB	1.B	7.0%	Extra	1.B	7.4%	SCB	1.B	7.4%	DCT
1.C	6.0%	Extra	1.C	6.6%	DCT	1.C	6.3%	Extra	1.C	7.0%	SCB
2.A	6.5%	DCT	2.A	6.7%	SCB	2.A	6.5%	DCT	2.A	7.2%	SCB
2.B	6.4%	DCT	2.B	6.6%	DCT	2.B	6.8%	DCT	2.B	7.5%	DCT
2.C	6.3%	SCB	2.C	6.4%	DCT	2.C	6.6%	SCB	2.C	6.7%	Extra

Test Conditions

- Aging Study
 - Plant Production (Short Term)
 - Loose mix oven aging @ 95 °C
 - 0, 14 and 21 days
 - Total: 3 conditions, 2 test types

SCB: 25°C

DCT: -12 or -18°C

- Temperature Study
 - All specimens are plant mixed, plant compacted
 - Total: 1 condition, 2 test types, 3 temperatures

SCB: 25, 13 and 1°C

DCT: -12 or -18°C

Overview

Introduction

- -Motivation and Objectives
- -DCT and SCB Fracture Tests
- Methodology and Materials
- Results
 - -Temperature
 - -Aging Effects
- Summary & Conclusion

Temperature Study: Low Temperature Performance

Lab Performance Testing, Eshan Dave, PAPA 01/18/2017

Effect of Temperature on SCB Results

Effect of Temperature on Fracture Behavior at Intermediate Temperatures

Overview

Introduction

- -Motivation and Objectives
- -DCT and SCB Fracture Tests
- Methodology and Materials
- Results
 - -Temperature
 - -Aging Effects
- Summary & Conclusion

Aging Study Results

SCB Fracture Energy at Intermediate Temperature

- Drop in fracture energy with increasing aging levels
- Extent of drop is not consistent with RAP amount

Effect of Aging on Fracture Behavior

Lab Performance Testing, Eshan Dave, PAPA 01/18/2017

Overview

Introduction

- -Motivation and Objectives
- -DCT and SCB Fracture Tests
- Methodology and Materials
- Results
 - -Temperature
 - -Aging Effects
- Summary & Conclusion

