"Up the Game" in Pavement Durability

PAPA 2016

January 25-27 / The Hotel Hershey

It's a Team Effort
Balanced RAP/RAS Mix Design for Project- Specific Service Conditions

Gary Hoffman
Producer’s Session

Original Presentation by:

Texas A&M Transportation Institute
Dave Newcomb
TXAPA, September 2014
Outline

• Introduction
• Existing design methods and limitations
• Balanced RAP/RAS mix design for project-specific conditions
 ▫ Need a mechanical test to assure rutting resistance
 ▫ Need a mechanical test to assure cracking resistance
 ▫ Need volumetric-air voids for quality control
 ▫ Need project-specific rutting and cracking requirements
• Demonstration of project-specific OT requirement
• Summary and conclusions
Introduction

• Benefit of RAP/RAS
 ▫ Economics
 • Saving aggregates
 • Saving asphalt binder
 ▫ Reducing rutting
 ▫ Environment
 • Reducing demands of non-renewable resources
 • Reducing landfill space demands
• RAP/RAS must be used!
Introduction

• No.1 concern- variability
 ▫ Binder grade variation
 ▫ Binder content variation
 ▫ Aggregate gradation

• Solution:
 ▫ Best practices for RAP/RAS processing and stockpile management

![Multiple sources RAP](image1.jpg)
![Well Separated RAP](image2.jpg)
Introduction

• No. 2 concern - cracking
 ▫ RAP/RAS binder too stiff

• Solution:
 ▫ Balanced mix design for project-specific conditions
Current mix design methods and limitations

- **Current mix design methods**
 - Volumetrics + Stability
 - Hveem
 - Marshall
 - **Superpave method**
 - Pure volumetrics; no mechanical testing
 - **Superpave plus**
 - Volumetrics+Hamburg/APA/...

- **Control cracking in current methods**
 - $V_{BE} (=VMA-AV)$ to control cracking; OK for virgin mixes
 - No simple cracking test
Limitations of current design methods for RAP/RAS mixes

- Feature of RAP/RAS mixes: Unknown VMA (V_{BE})
 - Don’t know how RAP/RAS blends with virgin binder.

- Need a mechanical test to assure cracking resistance.
One Benefit of Layered Pavement

- In a layered flexible pavement design, the material characteristics of each specific layer can be customized for optimum performance.
Plant Mix = AC + FA + CA

- PLUS:
 - WMA - Polymer - AS
 - RAP - GTR - PPA
 - RAS - Fibers
Balanced RAP/RAS mix design for project specific condition

• Current mix designs not suitable for RAP/RAS design
 ▫ Need to assure rutting resistance
 ▫ Need to assure cracking resistance
 ▫ Need volumetric-air voids for QC
 ▫ Need project-specific rutting and cracking requirements
 • Traffic
 • Climate
 • Structure
Why project-specific design:
RAP/RAS field test sections and performance

- **Amarillo-Overlay**: (Aug 2009)
 - IH40: Heavy traffic; Cold weather; Soft binder
 - RAP: 0, 20, 35%
- **Pharr district-New Const.**: (April 2010)
 - FM1017: low traffic; Hot weather; stiff binder
 - RAP: 0, 20, 35%
- **Laredo-Overlay**: SH359, 20%RAP (Mar. 2010)
- **Houston-New Const.**: SH146, 15%RAP/5%RAS (Oct. 2010)
- **Fort Worth-AC/CRCP**: Loop 820 (July 2012)
Why project-specific design:
RAP/RAS field test sections and performance

<table>
<thead>
<tr>
<th>Test sections</th>
<th>Highway</th>
<th>Overlay/new const.</th>
<th>Weather</th>
<th>Traffic MESAL</th>
<th>OT cycles</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amarillo</td>
<td>IH40 (severely cracked thick asphalt pavement)</td>
<td>4 inch/overlay</td>
<td>Cold</td>
<td>30</td>
<td>95</td>
<td>3 yrs: 100% refl. cracking</td>
</tr>
<tr>
<td></td>
<td>20%RAP</td>
<td></td>
<td></td>
<td></td>
<td>103</td>
<td>3 yrs: 57% refl. cracking</td>
</tr>
<tr>
<td></td>
<td>35%RAP</td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Pharr</td>
<td>FM1017-Very good support</td>
<td>1.5 inch/new const.</td>
<td>Very hot</td>
<td>0.8</td>
<td>28</td>
<td>3 yrs: overall - good conditions</td>
</tr>
<tr>
<td></td>
<td>20%RAP</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35%RAP</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Laredo</td>
<td>SH359-regular support</td>
<td>3 inch/overlay</td>
<td>Very hot</td>
<td>1.5</td>
<td>3</td>
<td>3 yrs: No cracking</td>
</tr>
<tr>
<td>Houston</td>
<td>SH146-Very good support</td>
<td>2 inch/new const.</td>
<td>hot</td>
<td>3.0</td>
<td>3</td>
<td>2.5 yrs: No cracking</td>
</tr>
<tr>
<td>Dalhart</td>
<td>US87</td>
<td>3 inch/Overlay</td>
<td>Cold</td>
<td>3.0</td>
<td>48/96</td>
<td>96 cycles-20% RCR; 48 cycles-50%RCR</td>
</tr>
</tbody>
</table>
Why project-specific design:
RAP/RAS field test sections and performance

1. RAP/RAS mixes perform well at certain locations.
2. One OT requirement cannot fit for all.
3. Successful use of RAP/RAS mixes depends on
 - Weather/Traffic
 - AC overlay
 - Overlay thickness, Existing pavement structure (AC/AC; AC/PCC)
 - Existing pavement conditions
 - New construction
 - Pavement structure and which layer (surface, base, etc.)
4. Design the mix for project-specific conditions
Balanced RAP/RAS mix design for project specific condition

Cracking

Mix Design

Rutting
Balanced RAP/RAS Mix Design for Project-Specific Service Conditions

- Hamburg test for rutting/moisture damage
- Overlay test for cracking
 \textit{OT requirement determined by Overlay program}
- Max. density-98% for controlling potential bleeding
Balanced RAP/RAS mix design for project specific condition

- RAS (RAP)
- Virgin binder
- WMA additive
- Raw aggregates

Conditioning temperature and time
Mixing temperature and time

SGC(N_design)
Compactability/ workability
Volumetric properties

Select at least 2 asphalt contents

Cracking: Overlay test
Rutting/moisture damage: Hamburg wheel tracking test

Predicted cracking development
Meet requirements

No
Yes

Balanced mix for project-specific conditions

Existing pavement conditions (crack severity level, LTE) if asphalt overlays

Traffic
Pavement structure
Climate

S-TxACOL
Cracking in Mixes

• How rapidly cracks occur:
 ▫ \(Rate = A(\Delta SIF)^n \)

• Stress Intensity Factor (SIF) depends upon:
 ▫ How wide the crack opens
 ▫ How stiff the material is
 ▫ How long the crack is
OT Cycles vs. A and n

Table of Mixes and Corresponding OT Cycles, A, and n

<table>
<thead>
<tr>
<th>No.</th>
<th>Mixes</th>
<th>OT Cycles</th>
<th>A</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>US87 S1-RAS mix (dense-graded mix)</td>
<td>94</td>
<td>1.3677E-06</td>
<td>4.0833</td>
</tr>
<tr>
<td>2</td>
<td>US87 S2-RAS mix (dense-graded mix)</td>
<td>48</td>
<td>7.9997E-06</td>
<td>3.7445</td>
</tr>
<tr>
<td>3</td>
<td>SH143-RAP mix (dense-graded mix)</td>
<td>5</td>
<td>2.2461E-03</td>
<td>2.5136</td>
</tr>
<tr>
<td>4</td>
<td>SH359-RAP mix (dense-graded mix)</td>
<td>3</td>
<td>7.6451E-04</td>
<td>3.0370</td>
</tr>
<tr>
<td>5</td>
<td>Loop820-RAP/RAS/WMA (dense-graded mix)</td>
<td>8</td>
<td>3.9572E-05</td>
<td>3.2465</td>
</tr>
<tr>
<td>6</td>
<td>Dallas-Ty B mix (dense-graded mix)</td>
<td>22</td>
<td>6.2163E-05</td>
<td>3.3900</td>
</tr>
<tr>
<td>7</td>
<td>Dallas-Ty C mix (dense-graded mix)</td>
<td>128</td>
<td>7.9056E-06</td>
<td>3.7014</td>
</tr>
<tr>
<td>8</td>
<td>MnRoad Cell12 (Superpave mix)</td>
<td>356</td>
<td>1.1148E-08</td>
<td>5.7841</td>
</tr>
<tr>
<td>9</td>
<td>MnRoad Cell16 (Superpave mix)</td>
<td>100</td>
<td>2.4601E-06</td>
<td>4.1542</td>
</tr>
<tr>
<td>10</td>
<td>PG64-34 TamKo RAS-5.2AC</td>
<td>322</td>
<td>2.9004E-08</td>
<td>5.3648</td>
</tr>
<tr>
<td>11</td>
<td>PG58-34 TamKo RAS-5.2AC</td>
<td>420</td>
<td>1.0015E-07</td>
<td>5.1560</td>
</tr>
<tr>
<td>12</td>
<td>Odessa P. Mix S4 (dense-graded mix)</td>
<td>161</td>
<td>7.3597E-08</td>
<td>4.8755</td>
</tr>
<tr>
<td>13</td>
<td>Buda PG64-34-5% RAS mix (dense-graded mix)</td>
<td>72</td>
<td>6.6989E-07</td>
<td>4.4910</td>
</tr>
<tr>
<td>14</td>
<td>Buda PG58-34-5% RAS mix (dense-graded mix)</td>
<td>274</td>
<td>6.1648E-08</td>
<td>5.0803</td>
</tr>
<tr>
<td>15</td>
<td>NCAT N9-1 (Superpave mix)</td>
<td>55</td>
<td>8.1553E-07</td>
<td>4.1200</td>
</tr>
<tr>
<td>16</td>
<td>NCAT N9-2 (Superpave mix)</td>
<td>6</td>
<td>6.4143E-05</td>
<td>3.5650</td>
</tr>
<tr>
<td>17</td>
<td>PG64-22 15%RAP (dense-graded mix)</td>
<td>76</td>
<td>1.0020E-06</td>
<td>4.3220</td>
</tr>
<tr>
<td>18</td>
<td>PG64-28 15%RAP (dense-graded mix)</td>
<td>240</td>
<td>3.9073E-06</td>
<td>3.8385</td>
</tr>
<tr>
<td>19</td>
<td>PG64-34 15%RAP(dense-graded mix)</td>
<td>926</td>
<td>5.8813E-08</td>
<td>5.1721</td>
</tr>
<tr>
<td>20</td>
<td>Paris-PG58-34 15%RAP (dense-graded mix)</td>
<td>274</td>
<td>8.3199E-08</td>
<td>5.1880</td>
</tr>
<tr>
<td>21</td>
<td>Amarillo-20%RAP-40 (dense-graded mix)</td>
<td>103</td>
<td>3.8371E-07</td>
<td>4.6076</td>
</tr>
<tr>
<td>22</td>
<td>SMA PG70-28 0RAP AC 6.6</td>
<td>827</td>
<td>5.1984E-09</td>
<td>5.7962</td>
</tr>
<tr>
<td>23</td>
<td>SMA PG70-28 0RAP AC 6.0</td>
<td>957</td>
<td>1.2871E-09</td>
<td>6.4071</td>
</tr>
<tr>
<td>24</td>
<td>NCAT S6-1 (Superpave mix)</td>
<td>28</td>
<td>2.6396E-06</td>
<td>3.8433</td>
</tr>
<tr>
<td>25</td>
<td>NCAT N10-1 (Superpave mix)</td>
<td>38</td>
<td>2.4574E-07</td>
<td>4.3536</td>
</tr>
</tbody>
</table>
Balanced RAP/RAS Mix Design for Project-Specific Conditions

Simplified Overlay design system

Determination of Min. OT cycles

Required main inputs:
1. OT cycles
2. Existing pavement conditions

2" Overlay over 10" JPCP under 3 MESALs/20 Years
Demonstration of project-specific OT requirement

- AC overlay scenarios
 - AC/PCC
 - AC/AC/CTB
 - AC/AC/granular base

- Traffic level: 3 MESAL
 - SH/US: 3-5 MESAL

- Weather:
 - Amarillo
 - Austin
 - McAllen
Demonstration of project-specific OT requirement

- Amarillo
Demonstration of project-specific OT requirement

- Aus
Demonstration of project-specific OT requirement

- McAllen

2" Overlay under 3 MESALs/20 Years

- 5"AC/12"Base
- 3"AC/10"CTB
Approaches for Improving RAP/RAS Mix Cracking Performance

- **Available approaches**
 - *Increase virgin AC* (higher density)
 - *Soft, modified binders:* PG64-28, PG64-34, PG58-34
 - Rejuvenators
Summary and Conclusions

- RAP/RAS mixes can have same or better performance with proper design.
- Balanced RAP/RAS mix design for project-specific conditions is recommended for use.
 - Hamburg test for rutting/moisture damage
 - OT for cracking; Project-specific OT requirement
 - Max. density to control potential bleeding
- Different approaches are available for improving RAP/RAS mix performance if needed.
What Performance Tests Have Been Adopted by Other States?

- Overlay Test (OT)
- Disk-Shaped Compact Tension (DCT)
- Semi-Circular Bend (SCB)
<table>
<thead>
<tr>
<th></th>
<th>Mix Design</th>
<th>Acceptance Quality Characteristics</th>
<th>Initial Verification Go / No Go</th>
<th>Ongoing Go / No Go</th>
<th>Information Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superpave M323</td>
<td>Volumetric</td>
<td>Volumetric Field Compaction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>Volumetric Beam Fatigue Repeated Shear Hamburg</td>
<td>Volumetric Field Compaction</td>
<td></td>
<td></td>
<td>Beam Fatigue Repeated Shear Hamburg</td>
</tr>
<tr>
<td>Texas</td>
<td>Volumetric Overlay Tester Hamburg</td>
<td>Volumetric Field Compaction</td>
<td>Overlay Tester Hamburg</td>
<td>Overlay Tester Hamburg</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Volumetric SCB, DC(t) Overlay Tester</td>
<td>Volumetric Field Compaction</td>
<td>DC(t) Overlay Tester Hamburg</td>
<td>DC(t) Overlay Tester</td>
<td>SCB</td>
</tr>
<tr>
<td>Illinois</td>
<td>Volumetric IL-SCB* Hamburg</td>
<td>Volumetric Field Compaction</td>
<td>IL-SCB* Hamburg</td>
<td>IL-SCB* Hamburg</td>
<td>DC(t)</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Volumetric APA Beam Fatigue Overlay Tester</td>
<td>Field Compaction</td>
<td>APA Beam Fatigue Overlay Tester</td>
<td>APA Beam Fatigue Overlay Tester</td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>Volumetric SCB Hamburg</td>
<td>Field Compaction</td>
<td>SCB Hamburg</td>
<td>SCB Hamburg</td>
<td></td>
</tr>
</tbody>
</table>
Overlay Test

- Developed at Texas Transportation Institute
- Cyclical Direct Tension
- Primarily for Overlay Layers
- Texas and New Jersey
Overlay Test:
https://www.youtube.com/watch?v=tLGVK_mHX_I
Disk-Shaped Compact Tension

- DCt (ASTM D 7313-13)
- Direct tension at low temps. (PG + 2C)
- Minnesota & Wisconsin
DCT Test:
https://www.youtube.com/watch?v=r7y-oAziaP8
Semi-Circular Bend

-SCB (AASHTO TP 105)
-Bending Fatigue Test
-Illinois & Louisianna
SCB at Low Temperature:
https://www.youtube.com/watch?v=mWKXZhEHoto